Suppr超能文献

认知神经科学中上下文敏感的计算机制解释。

Context-sensitive computational mechanistic explanation in cognitive neuroscience.

作者信息

de Wit Matthieu M, Matheson Heath E

机构信息

Department of Neuroscience, Muhlenberg College, Allentown, PA, United States.

Department of Psychology, University of Northern British Columbia, Prince George, BC, Canada.

出版信息

Front Psychol. 2022 Jul 22;13:903960. doi: 10.3389/fpsyg.2022.903960. eCollection 2022.

Abstract

Mainstream cognitive neuroscience aims to build mechanistic explanations of behavior by mapping abilities described at the organismal level the subpersonal level of computation onto specific brain networks. We provide an integrative review of these commitments and their mismatch with empirical research findings. Context-dependent neural tuning, neural reuse, degeneracy, plasticity, functional recovery, and the neural correlates of enculturated skills each show that there is a lack of stable mappings between organismal, computational, and neural levels of analysis. We furthermore highlight recent research suggesting that task context at the organismal level determines the dynamic parcellation of functional components at the neural level. Such instability prevents the establishment of specific computational descriptions of neural function, which remains a central goal of many brain mappers - including those who are sympathetic to the notion of many-to-many mappings between organismal and neural levels. This between-level instability presents a deep epistemological challenge and requires a reorientation of methodological and theoretical commitments within cognitive neuroscience. We demonstrate the need for change to brain mapping efforts in the face of instability if cognitive neuroscience is to maintain its central goal of constructing computational mechanistic explanations of behavior; we show that such explanations must be contextual at all levels.

摘要

主流认知神经科学旨在通过将在机体水平描述的能力——即计算的亚个体水平——映射到特定的脑网络,来构建行为的机械性解释。我们对这些观点及其与实证研究结果的不匹配进行了综合综述。情境依赖的神经调谐、神经重用、简并性、可塑性、功能恢复以及文化技能的神经关联,均表明在机体、计算和神经分析水平之间缺乏稳定的映射关系。我们还强调了最近的研究,这些研究表明机体水平的任务情境决定了神经水平功能组件的动态分割。这种不稳定性阻碍了建立神经功能的特定计算描述,而这仍然是许多脑图谱绘制者的核心目标——包括那些赞同机体和神经水平之间存在多对多映射概念的人。这种水平间的不稳定性带来了深刻的认识论挑战,需要重新调整认知神经科学中的方法和理论观点。我们证明,如果认知神经科学要维持其构建行为的计算机械性解释的核心目标,面对不稳定性时就需要改变脑图谱绘制的努力方向;我们表明,这样的解释在所有水平上都必须是情境化的。

相似文献

1
Context-sensitive computational mechanistic explanation in cognitive neuroscience.
Front Psychol. 2022 Jul 22;13:903960. doi: 10.3389/fpsyg.2022.903960. eCollection 2022.
2
Theoretical strategies for an embodied cognitive neuroscience: Mechanistic explanations of brain-body-environment systems.
Cogn Neurosci. 2024 Jul-Oct;15(3-4):85-97. doi: 10.1080/17588928.2024.2349546. Epub 2024 May 12.
3
Enrichment Effects on Adult Cognitive Development: Can the Functional Capacity of Older Adults Be Preserved and Enhanced?
Psychol Sci Public Interest. 2008 Oct;9(1):1-65. doi: 10.1111/j.1539-6053.2009.01034.x. Epub 2008 Oct 1.
4
Pseudo-mechanistic Explanations in Psychology and Cognitive Neuroscience.
Top Cogn Sci. 2020 Oct;12(4):1294-1305. doi: 10.1111/tops.12448. Epub 2019 Jul 29.
5
Model-based functional neuroimaging using dynamic neural fields: An integrative cognitive neuroscience approach.
J Math Psychol. 2017 Feb;76(Pt B):212-235. doi: 10.1016/j.jmp.2016.11.002. Epub 2016 Dec 21.
6
On the Nature of Explanations Offered by Network Science: A Perspective From and for Practicing Neuroscientists.
Top Cogn Sci. 2020 Oct;12(4):1272-1293. doi: 10.1111/tops.12504. Epub 2020 May 22.
7
Toward a computational framework for cognitive biology: unifying approaches from cognitive neuroscience and comparative cognition.
Phys Life Rev. 2014 Sep;11(3):329-64. doi: 10.1016/j.plrev.2014.04.005. Epub 2014 May 13.
8
A Neuroscience Levels of Explanation Approach to the Mind and the Brain.
Front Comput Neurosci. 2021 Apr 7;15:649679. doi: 10.3389/fncom.2021.649679. eCollection 2021.
10
A Critical Perspective on Neural Mechanisms in Cognitive Neuroscience: Towards Unification.
Perspect Psychol Sci. 2024 Nov;19(6):993-1010. doi: 10.1177/17456916231191744. Epub 2023 Aug 29.

引用本文的文献

1
The degenerate coding of psychometric profiles through functional connectivity archetypes.
Front Hum Neurosci. 2024 Sep 10;18:1455776. doi: 10.3389/fnhum.2024.1455776. eCollection 2024.
2
Mechanistic decomposition and reduction in complex, context-sensitive systems.
Front Psychol. 2022 Nov 7;13:992347. doi: 10.3389/fpsyg.2022.992347. eCollection 2022.

本文引用的文献

1
Situated Neural Representations: Solving the Problems of Content.
Front Neurorobot. 2022 Apr 14;16:846979. doi: 10.3389/fnbot.2022.846979. eCollection 2022.
2
Preserved Cognition After Right Hemispherectomy.
Neurol Clin Pract. 2021 Dec;11(6):e906-e908. doi: 10.1212/CPJ.0000000000001015.
3
Neural tuning and representational geometry.
Nat Rev Neurosci. 2021 Nov;22(11):703-718. doi: 10.1038/s41583-021-00502-3. Epub 2021 Sep 14.
4
Association Cortex Is Essential to Reverse Hemianopia by Multisensory Training.
Cereb Cortex. 2021 Oct 1;31(11):5015-5023. doi: 10.1093/cercor/bhab138.
5
Scene context shapes category representational geometry during processing of tools.
Cortex. 2021 Aug;141:1-15. doi: 10.1016/j.cortex.2021.03.021. Epub 2021 Apr 10.
6
A Unifying Account of Angular Gyrus Contributions to Episodic and Semantic Cognition.
Trends Neurosci. 2021 Jun;44(6):452-463. doi: 10.1016/j.tins.2021.01.006. Epub 2021 Feb 18.
7
The Theory Crisis in Psychology: How to Move Forward.
Perspect Psychol Sci. 2021 Jul;16(4):779-788. doi: 10.1177/1745691620970586. Epub 2021 Jan 29.
8
The Continuity of Context: A Role for the Hippocampus.
Trends Cogn Sci. 2021 Mar;25(3):187-199. doi: 10.1016/j.tics.2020.12.007. Epub 2021 Jan 8.
9
The Brain-Cognitive Behavior Problem: A Retrospective.
eNeuro. 2020 Aug 7;7(4). doi: 10.1523/ENEURO.0069-20.2020. Print 2020 Jul/Aug.
10
Between Ecological Psychology and Enactivism: Is There Resonance?
Front Psychol. 2020 Jun 3;11:1147. doi: 10.3389/fpsyg.2020.01147. eCollection 2020.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验