Suppr超能文献

定位神经表征:解决内容问题。

Situated Neural Representations: Solving the Problems of Content.

作者信息

Piccinini Gualtiero

机构信息

Department of Philosophy and Center for Neurodynamics, University of Missouri-St. Louis, St. Louis, MO, United States.

出版信息

Front Neurorobot. 2022 Apr 14;16:846979. doi: 10.3389/fnbot.2022.846979. eCollection 2022.

Abstract

Situated approaches to cognition maintain that cognition is embodied, embedded, enactive, and affective (and extended, but that is not relevant here). Situated approaches are often pitched as alternatives to computational and representational approaches, according to which cognition is computation over representations. I argue that, far from being opposites, situatedness and neural representation are more deeply intertwined than anyone suspected. To show this, I introduce a neurocomputational account of cognition that relies on neural representations. I argue not only that this account is compatible with (non-question-begging) situated approaches, but also that it embodiment, embeddedness, enaction, and affect at its very core. That is, constructing neural representations and their semantic content, and learning computational processes appropriate for their content, requires a tight dynamic interaction between nervous system, body, and environment. Most importantly, I argue that situatedness is needed to give a satisfactory account of neural representation: neurocognitive systems that are embodied, embedded, affective, dynamically interact with their environment, and use feedback from their interaction to shape their own representations and computations (1) can construct neural representations with original semantic content, (2) their neural vehicles and the way they are processed are automatically coordinated with their content, (3) such content is causally efficacious, (4) is determinate enough for the system's purposes, (5) represents the distal stimulus, and (6) can misrepresent. This proposal hints at what is needed to build artifacts with some of the basic cognitive capacities possessed by neurocognitive systems.

摘要

情境认知方法认为,认知是具身的、嵌入的、生成的和情感性的(以及扩展的,但这一点在此处不相关)。情境认知方法常被视为计算和表征方法的替代方案,后者认为认知是对表征的计算。我认为,情境性和神经表征远非对立,而是比任何人怀疑的都更紧密地交织在一起。为了说明这一点,我引入了一种依赖神经表征的认知神经计算解释。我不仅认为这种解释与(非循环论证的)情境认知方法兼容,而且认为它在其核心处包含了具身性、嵌入性、生成性和情感性。也就是说,构建神经表征及其语义内容,以及学习适合其内容的计算过程,需要神经系统、身体和环境之间紧密的动态交互。最重要的是,我认为情境性是对神经表征给出令人满意解释所必需的:具身的、嵌入的、有情感的神经认知系统,与它们的环境动态交互,并利用来自这种交互的反馈来塑造它们自己的表征和计算,(1)能够构建具有原始语义内容的神经表征,(2)它们的神经载体及其处理方式会自动与它们的内容相协调,(3)这样的内容具有因果效力,(4)对于系统的目的来说足够确定,(5)表征远端刺激,并且(6)可能会出现错误表征。这一观点暗示了构建具有神经认知系统所拥有的一些基本认知能力的人工制品所需的条件。

相似文献

1
Situated Neural Representations: Solving the Problems of Content.定位神经表征:解决内容问题。
Front Neurorobot. 2022 Apr 14;16:846979. doi: 10.3389/fnbot.2022.846979. eCollection 2022.
2
Toward an Embodied, Embedded Predictive Processing Account.迈向具身、嵌入的预测处理理论
Front Psychol. 2021 Jan 29;12:543076. doi: 10.3389/fpsyg.2021.543076. eCollection 2021.
3
TEST: a tropic, embodied, and situated theory of cognition.测试:一种具身、情境化的认知理论。
Top Cogn Sci. 2014 Jul;6(3):442-60. doi: 10.1111/tops.12024. Epub 2013 Apr 24.
4
Embodied (4EA) cognitive computational neuroscience.具身(4EA)认知计算神经科学。
Cogn Neurosci. 2024 Jul-Oct;15(3-4):119-121. doi: 10.1080/17588928.2024.2405192. Epub 2024 Sep 21.
7
The links between experiential learning and 4E cognition.体验式学习与 4E 认知之间的联系。
Ann N Y Acad Sci. 2024 Nov;1541(1):37-52. doi: 10.1111/nyas.15238. Epub 2024 Oct 9.
8
A Radical Reassessment of the Body in Social Cognition.社会认知中身体的彻底重新评估。
Front Psychol. 2020 Jun 5;11:987. doi: 10.3389/fpsyg.2020.00987. eCollection 2020.
9
Toward a radically embodied neuroscience of attachment and relationships.迈向依恋与关系的激进具身神经科学。
Front Hum Neurosci. 2015 May 21;9:266. doi: 10.3389/fnhum.2015.00266. eCollection 2015.

本文引用的文献

4
Neuromodulation of Innate Behaviors in Drosophila.果蝇先天行为的神经调节。
Annu Rev Neurosci. 2017 Jul 25;40:327-348. doi: 10.1146/annurev-neuro-072116-031558. Epub 2017 Apr 24.
5
Biological organisation as closure of constraints.作为约束闭合的生物组织。
J Theor Biol. 2015 May 7;372:179-91. doi: 10.1016/j.jtbi.2015.02.029. Epub 2015 Mar 6.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验