Suppr超能文献

基于影像的深度图神经网络用于早期肺癌生存分析的CT研究:一项多中心研究

Imaging-Based Deep Graph Neural Networks for Survival Analysis in Early Stage Lung Cancer Using CT: A Multicenter Study.

作者信息

Lian Jie, Long Yonghao, Huang Fan, Ng Kei Shing, Lee Faith M Y, Lam David C L, Fang Benjamin X L, Dou Qi, Vardhanabhuti Varut

机构信息

Department of Diagnostic Radiology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, Hong Kong SAR, China.

Department of Computer Science, The Chinese University of Hong Kong, Hong Kong, Hong Kong SAR, China.

出版信息

Front Oncol. 2022 Jul 13;12:868186. doi: 10.3389/fonc.2022.868186. eCollection 2022.

Abstract

BACKGROUND

Lung cancer is the leading cause of cancer-related mortality, and accurate prediction of patient survival can aid treatment planning and potentially improve outcomes. In this study, we proposed an automated system capable of lung segmentation and survival prediction using graph convolution neural network (GCN) with CT data in non-small cell lung cancer (NSCLC) patients.

METHODS

In this retrospective study, we segmented 10 parts of the lung CT images and built individual lung graphs as inputs to train a GCN model to predict 5-year overall survival. A Cox proportional-hazard model, a set of machine learning (ML) models, a convolutional neural network based on tumor (Tumor-CNN), and the current TNM staging system were used as comparison.

FINDINGS

A total of 1,705 patients (main cohort) and 125 patients (external validation cohort) with lung cancer (stages I and II) were included. The GCN model was significantly predictive of 5-year overall survival with an AUC of 0.732 (p < 0.0001). The model stratified patients into low- and high-risk groups, which were associated with overall survival (HR = 5.41; 95% CI:, 2.32-10.14; p < 0.0001). On external validation dataset, our GCN model achieved the AUC score of 0.678 (95% CI: 0.564-0.792; p < 0.0001).

INTERPRETATION

The proposed GCN model outperformed all ML, Tumor-CNN, and TNM staging models. This study demonstrated the value of utilizing medical imaging graph structure data, resulting in a robust and effective model for the prediction of survival in early-stage lung cancer.

摘要

背景

肺癌是癌症相关死亡的主要原因,准确预测患者生存率有助于治疗规划并可能改善治疗结果。在本研究中,我们提出了一种自动化系统,该系统能够使用图卷积神经网络(GCN)和非小细胞肺癌(NSCLC)患者的CT数据进行肺部分割和生存预测。

方法

在这项回顾性研究中,我们对10个肺CT图像部分进行分割,并构建个体肺图作为输入,以训练GCN模型来预测5年总生存率。将Cox比例风险模型、一组机器学习(ML)模型、基于肿瘤的卷积神经网络(肿瘤-CNN)和当前的TNM分期系统用作比较。

结果

共纳入1705例患者(主要队列)和125例肺癌患者(I期和II期)(外部验证队列)。GCN模型对5年总生存率具有显著预测性,AUC为0.732(p<0.0001)。该模型将患者分为低风险和高风险组,这与总生存率相关(HR=5.41;95%CI:2.32-10.14;p<0.0001)。在外部验证数据集上,我们的GCN模型的AUC评分为0.678(95%CI:0.564-0.792;p<0.0001)。

解读

所提出的GCN模型优于所有ML、肿瘤-CNN和TNM分期模型。本研究证明了利用医学成像图结构数据的价值,从而产生了一个用于预测早期肺癌生存率的强大而有效的模型。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e48b/9351205/3296bfa8135d/fonc-12-868186-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验