Suppr超能文献

新冠疫情下的国家形象:以中国为例

Country Image in COVID-19 Pandemic: A Case Study of China.

作者信息

Chen Huimin, Zhu Zeyu, Qi Fanchao, Ye Yining, Liu Zhiyuan, Sun Maosong, Jin Jianbin

机构信息

School of Journalism and CommunicationTsinghua University Beijing 100084 China.

Department of Computer Science and TechnologyTsinghua University Beijing 100084 China.

出版信息

IEEE Trans Big Data. 2020 Sep 11;7(1):81-92. doi: 10.1109/TBDATA.2020.3023459. eCollection 2021 Mar 1.

Abstract

Country image has a profound influence on international relations and economic development. In the worldwide outbreak of COVID-19, countries and their people display different reactions, resulting in diverse perceived images among foreign public. Therefore, in this article, we take China as a specific and typical case and investigate its image with aspect-based sentiment analysis on a large-scale Twitter dataset. To our knowledge, this is the first study to explore country image in such a fine-grained way. To perform the analysis, we first build a manually-labeled Twitter dataset with aspect-level sentiment annotations. Afterward, we conduct the aspect-based sentiment analysis with BERT to explore the image of China. We discover an overall sentiment change from non-negative to negative in the general public, and explain it with the increasing mentions of negative ideology-related aspects and decreasing mentions of non-negative fact-based aspects. Further investigations into different groups of Twitter users, including U.S. Congress members, English media, and social bots, reveal different patterns in their attitudes toward China. This article provides a deeper understanding of the changing image of China in COVID-19 pandemic. Our research also demonstrates how aspect-based sentiment analysis can be applied in social science researches to deliver valuable insights.

摘要

国家形象对国际关系和经济发展有着深远影响。在新冠疫情全球大流行期间,各国及其民众表现出不同反应,导致外国公众对其形成了多样的认知形象。因此,在本文中,我们以中国作为一个具体且典型的案例,基于大规模推特数据集,运用基于方面的情感分析来研究其国家形象。据我们所知,这是首次以如此细粒度的方式探索国家形象的研究。为进行分析,我们首先构建了一个带有方面级情感标注的人工标注推特数据集。随后,我们使用BERT进行基于方面的情感分析,以探究中国形象。我们发现公众的总体情感从非负转变为负面,并通过与负面意识形态相关方面提及次数的增加以及基于事实的非负方面提及次数的减少来对此进行解释。对不同推特用户群体的进一步调查,包括美国国会议员、英语媒体和社交机器人,揭示了他们对中国态度的不同模式。本文为深入理解新冠疫情期间中国不断变化的形象提供了帮助。我们的研究还展示了基于方面的情感分析如何应用于社会科学研究以提供有价值的见解。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ada1/8769017/c09c1120d059/chen1-3023459.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验