Suppr超能文献

一种用于COVID-19大流行期间超额死亡率面板时间序列预测的集成学习策略。

An ensemble learning strategy for panel time series forecasting of excess mortality during the COVID-19 pandemic.

作者信息

Ashofteh Afshin, Bravo Jorge M, Ayuso Mercedes

机构信息

NOVA Information Management School (NOVA IMS), Nova University Lisbon, Campus de Campolide, 1070-312 Lisboa, Portugal.

NOVA Information Management School (NOVA IMS), ISCTE-IUL BRU, CEFAGE-UE, Portugal.

出版信息

Appl Soft Comput. 2022 Oct;128:109422. doi: 10.1016/j.asoc.2022.109422. Epub 2022 Aug 1.

Abstract

Quantifying and analyzing excess mortality in crises such as the ongoing COVID-19 pandemic is crucial for policymakers. Traditional measures fail to take into account differences in the level, long-term secular trends, and seasonal patterns in all-cause mortality across countries and regions. This paper develops and empirically investigates the forecasting performance of a novel, flexible and dynamic ensemble learning with a model selection strategy (DELMS) for the seasonal time series forecasting of monthly respiratory disease death data across a pool of 61 heterogeneous countries. The strategy is based on a Bayesian model averaging (BMA) of heterogeneous time series methods involving both the selection of the subset of best forecasters (model confidence set), the identification of the best holdout period for each contributed model, and the determination of optimal weights using out-of-sample predictive accuracy. A model selection strategy is also developed to remove the outlier models and to combine the models with reasonable accuracy in the ensemble. The empirical outcomes of this large set of experiments show that the accuracy of the BMA approach is significantly improved with DELMS when selecting a flexible and dynamic holdout period and removing the outlier models. Additionally, the forecasts of respiratory disease deaths for each country are highly accurate and exhibit a high correlation (94%) with COVID-19 deaths in 2020.

摘要

对正在发生的新冠疫情等危机中的超额死亡率进行量化和分析,对政策制定者来说至关重要。传统方法未能考虑到各国和各地区全因死亡率在水平、长期长期趋势和季节性模式方面的差异。本文针对61个不同国家的月度呼吸道疾病死亡数据的季节性时间序列预测,开发并实证研究了一种具有模型选择策略的新型、灵活且动态的集成学习方法(DELMS)的预测性能。该策略基于异质时间序列方法的贝叶斯模型平均(BMA),包括选择最佳预测器子集(模型置信集)、确定每个贡献模型的最佳留出期,以及使用样本外预测准确性确定最优权重。还开发了一种模型选择策略,以去除异常值模型,并在集成中组合具有合理准确性 的模型。这一大组实验的实证结果表明,在选择灵活且动态的留出期并去除异常值模型时,DELMS能显著提高BMA方法的准确性。此外,每个国家的呼吸道疾病死亡预测都高度准确,并且与2020年的新冠死亡人数呈现出高度相关性(94%)。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7c2a/9341166/f68f4f88e404/ga1_lrg.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验