Suppr超能文献

改善子宫内膜癌患者的术前风险分层:ENDORISK 贝叶斯网络模型在大型基于人群的病例系列中的外部验证。

Improved preoperative risk stratification in endometrial carcinoma patients: external validation of the ENDORISK Bayesian network model in a large population-based case series.

机构信息

Department of Women's Health, University Hospital Tuebingen, Calwerstraße 7, 72076, Tuebingen, Germany.

Department of Radiation Oncology, Radboud University Medical Center, Geert Grooteplein Zuid 10, 6525 GA, Nijmegen, The Netherlands.

出版信息

J Cancer Res Clin Oncol. 2023 Jul;149(7):3361-3369. doi: 10.1007/s00432-022-04218-4. Epub 2022 Aug 8.

Abstract

PURPOSE

Preoperative risk stratification of newly diagnosed endometrial carcinoma (EC) patients has been hindered by only moderate prediction performance for many years. Recently ENDORISK, a Bayesian network model, showed high predictive performance. It was the aim of this study to validate ENDORISK by applying the model to a population-based case series of EC patients.

METHODS

ENDORISK was applied to a retrospective cohort of women surgically treated for EC from 2003 to 2013. Prediction accuracy for LNM as well as 5-year DSS was investigated. The model's overall performance was quantified by the Brier score, discriminative performance by area under the curve (AUC).

RESULTS

A complete dataset was evaluable from 247 patients. 78.1% cases were endometrioid histotype. The majority of patients (n = 156;63.2%) had stage IA disease. Overall, positive lymph nodes were found in 20 (8.1%) patients. Using ENDORISK predicted probabilities, most (n = 156;63.2%) patients have been assigned to low or very low risk group with a false-negative rate of 0.6%. AUC for LNM prediction was 0.851 [95% confidence interval (CI) 0.761-0.941] with a Brier score of 0.06. For 5-year DSS the AUC was 0.698 (95% CI 0.595-0.800) as Brier score has been calculated 0.09.

CONCLUSIONS

We were able to successfully validate ENDORISK for prediction of LNM and 5-year DSS. Next steps will now have to focus on ENDORISK performance in daily clinical practice. In addition, incorporating TCGA-derived molecular subtypes will be of key importance for future extended use. This study may support further promoting of data-based decision-making tools for personalized treatment of EC.

摘要

目的

新诊断子宫内膜癌(EC)患者的术前风险分层多年来一直受到仅中度预测性能的阻碍。最近,ENDORISK 是一种贝叶斯网络模型,显示出了较高的预测性能。本研究的目的是通过将该模型应用于 EC 患者的基于人群的病例系列来验证 ENDORISK。

方法

ENDORISK 应用于 2003 年至 2013 年间接受手术治疗的 EC 女性回顾性队列。研究了预测淋巴结转移(LNM)和 5 年无病生存率(DSS)的准确性。通过 Brier 评分量化模型的整体性能,通过曲线下面积(AUC)评估判别性能。

结果

可评估 247 例患者的完整数据集。78.1%的病例为子宫内膜样组织学类型。大多数患者(n=156;63.2%)为 IA 期疾病。总体而言,20 例(8.1%)患者发现阳性淋巴结。使用 ENDORISK 预测概率,大多数(n=156;63.2%)患者被分配到低或极低风险组,假阴性率为 0.6%。LNM 预测的 AUC 为 0.851(95%CI 0.761-0.941),Brier 评分 0.06。5 年 DSS 的 AUC 为 0.698(95%CI 0.595-0.800),Brier 评分计算为 0.09。

结论

我们成功地验证了 ENDORISK 用于预测 LNM 和 5 年 DSS。下一步将集中在 ENDORISK 在日常临床实践中的性能。此外,纳入 TCGA 衍生的分子亚型对于未来的扩展使用将至关重要。本研究可能支持进一步推广基于数据的决策工具,以实现 EC 的个体化治疗。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ac93/11796799/33a1650091b0/432_2022_4218_Fig1_HTML.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验