Suppr超能文献

按年龄和地区对英格兰的新冠肺炎死亡病例进行即时预测。

Nowcasting COVID-19 deaths in England by age and region.

作者信息

Seaman Shaun R, Samartsidis Pantelis, Kall Meaghan, De Angelis Daniela

机构信息

MRC Biostatistics Unit University of Cambridge Cambridge Cambridgeshire UK.

COVID-19 National Epidemiology Cell UK Health Security Agency London UK.

出版信息

J R Stat Soc Ser C Appl Stat. 2022 Jun 15. doi: 10.1111/rssc.12576.

Abstract

Understanding the trajectory of the daily number of COVID-19 deaths is essential to decisions on how to respond to the pandemic, but estimating this trajectory is complicated by the delay between deaths occurring and being reported. In England the delay is typically several days, but it can be weeks. This causes considerable uncertainty about how many deaths occurred in recent days. Here we estimate the deaths per day in five age strata within seven English regions, using a Bayesian model that accounts for reporting-day effects and longer-term changes in the delay distribution. We show how the model can be computationally efficiently fitted when the delay distribution is the same in multiple strata, for example, over a wide range of ages.

摘要

了解新冠病毒死亡人数的每日变化轨迹对于如何应对疫情的决策至关重要,但由于死亡发生与报告之间存在延迟,估算这一轨迹变得复杂。在英格兰,延迟通常为几天,但也可能长达数周。这使得近期死亡人数存在相当大的不确定性。在此,我们使用一个考虑报告日效应和延迟分布长期变化的贝叶斯模型,估算了英格兰七个地区五个年龄层的每日死亡人数。我们展示了在多个年龄层(例如在广泛的年龄范围内)延迟分布相同时,该模型如何能够高效地进行计算拟合。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e30e/9349735/ed7779d9ffcb/RSSC-9999-0-g004.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验