Suppr超能文献

欧洲新冠疫情项目中的数据共享挑战:提升大流行防范与应对能力的学习契机。

Challenges of data sharing in European Covid-19 projects: A learning opportunity for advancing pandemic preparedness and response.

作者信息

Tacconelli Evelina, Gorska Anna, Carrara Elena, Davis Ruth Joanna, Bonten Marc, Friedrich Alex W, Glasner Corinna, Goossens Herman, Hasenauer Jan, Abad Josep Maria Haro, Peñalvo José L, Sanchez-Niubo Albert, Sialm Anastassja, Scipione Gabriella, Soriano Gloria, Yazdanpanah Yazdan, Vorstenbosch Ellen, Jaenisch Thomas

机构信息

Infectious Diseases Division, Department of Diagnostics and Public Health, University of Verona, Verona, Italy.

Julius Center for Health Sciences and Primary Care, University Medical Center Utrecht, Netherlands.

出版信息

Lancet Reg Health Eur. 2022 Oct;21:100467. doi: 10.1016/j.lanepe.2022.100467. Epub 2022 Aug 4.

Abstract

The COVID-19 pandemic saw a massive investment into collaborative research projects with a focus on producing data to support public health decisions. We relay our direct experience of four projects funded under the Horizon2020 programme, namely ReCoDID, ORCHESTRA, unCoVer and SYNCHROS. The projects provide insight into the complexities of sharing patient level data from observational cohorts. We focus on compliance with the General Data Protection Regulation (GDPR) and ethics approvals when sharing data across national borders. We discuss procedures for data mapping; submission of new international codes to standards organisation; federated approach; and centralised data curation. Finally, we put forward recommendations for the development of guidelines for the application of GDPR in case of major public health threats; mandatory standards for data collection in funding frameworks; training and capacity building for data owners; cataloguing of international use of metadata standards; and dedicated funding for identified critical areas.

摘要

在新冠疫情期间,对合作研究项目进行了大规模投资,重点是生成数据以支持公共卫生决策。我们讲述了在“地平线2020”计划资助下的四个项目的直接经验,即ReCoDID、ORCHESTRA、unCoVer和SYNCHROS。这些项目让我们深入了解了从观察性队列中共享患者层面数据的复杂性。我们关注在跨境共享数据时遵守《通用数据保护条例》(GDPR)和伦理批准情况。我们讨论了数据映射程序;向标准组织提交新的国际代码;联合方法;以及集中式数据管理。最后,我们就以下方面提出建议:制定在重大公共卫生威胁情况下适用GDPR的指南;资助框架中数据收集的强制标准;数据所有者的培训和能力建设;元数据标准国际使用的编目;以及为确定的关键领域提供专项资金。

相似文献

5
The future of Cochrane Neonatal.考克兰新生儿协作网的未来。
Early Hum Dev. 2020 Nov;150:105191. doi: 10.1016/j.earlhumdev.2020.105191. Epub 2020 Sep 12.

引用本文的文献

8
A data management system for precision medicine.一种用于精准医学的数据管理系统。
PLOS Digit Health. 2025 Jan 9;4(1):e0000464. doi: 10.1371/journal.pdig.0000464. eCollection 2025 Jan.
9
Federated difference-in-differences with multiple time periods in DataSHIELD.DataSHIELD中多时间段的联邦双重差分法
iScience. 2024 Oct 9;27(11):111025. doi: 10.1016/j.isci.2024.111025. eCollection 2024 Nov 15.
10

本文引用的文献

6
A Map of the Initiatives That Harmonize Patient Cohorts Across the World.一张协调全球患者队列的倡议地图。
Front Public Health. 2021 Jul 15;9:666844. doi: 10.3389/fpubh.2021.666844. eCollection 2021.
8
Methodological quality of COVID-19 clinical research.COVID-19 临床研究的方法学质量。
Nat Commun. 2021 Feb 11;12(1):943. doi: 10.1038/s41467-021-21220-5.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验