Suppr超能文献

神经退行性疾病研究中的数据共享:创新药物倡议公私合作模式带来的挑战与经验教训

Data sharing in neurodegenerative disease research: challenges and learnings from the innovative medicines initiative public-private partnership model.

作者信息

Bradshaw Angela, Hughes Nigel, Vallez-Garcia David, Chokoshvili Davit, Owens Andrew, Hansen Clint, Emmert Kirsten, Maetzler Walter, Killin Lewis, Barnes Rodrigo, Brookes Anthony J, Visser Pieter Jelle, Hofmann-Apitius Martin, Diaz Carlos, Steukers Lennert

机构信息

Alzheimer Europe, Luxembourg Ville, Luxembourg.

Janssen Pharmaceutica NV, Beerse, Belgium.

出版信息

Front Neurol. 2023 Jul 20;14:1187095. doi: 10.3389/fneur.2023.1187095. eCollection 2023.

Abstract

Efficient data sharing is hampered by an array of organizational, ethical, behavioral, and technical challenges, slowing research progress and reducing the utility of data generated by clinical research studies on neurodegenerative diseases. There is a particular need to address differences between public and private sector environments for research and data sharing, which have varying standards, expectations, motivations, and interests. The Neuronet data sharing Working Group was set up to understand the existing barriers to data sharing in public-private partnership projects, and to provide guidance to overcome these barriers, by convening data sharing experts from diverse projects in the IMI neurodegeneration portfolio. In this policy and practice review, we outline the challenges and learnings of the WG, providing the neurodegeneration community with examples of good practices and recommendations on how to overcome obstacles to data sharing. These obstacles span organizational issues linked to the unique structure of cross-sectoral, collaborative research initiatives, to technical issues that affect the storage, structure and annotations of individual datasets. We also identify sociotechnical hurdles, such as academic recognition and reward systems that disincentivise data sharing, and legal challenges linked to heightened perceptions of data privacy risk, compounded by a lack of clear guidance on GDPR compliance mechanisms for public-private research. Focusing on real-world, neuroimaging and digital biomarker data, we highlight particular challenges and learnings for data sharing, such as data management planning, development of ethical codes of conduct, and harmonization of protocols and curation processes. Cross-cutting solutions and enablers include the principles of transparency, standardization and co-design - from open, accessible metadata catalogs that enhance findability of data, to measures that increase visibility and trust in data reuse.

摘要

一系列组织、伦理、行为和技术挑战阻碍了高效的数据共享,减缓了研究进展,降低了神经退行性疾病临床研究产生的数据的效用。尤其需要解决公共部门和私营部门在研究和数据共享环境方面的差异,它们有着不同的标准、期望、动机和利益。设立了神经元网络数据共享工作组,通过召集来自国际制药创新联盟(IMI)神经退行性疾病项目组合中不同项目的数据共享专家,来了解公私合作项目中数据共享的现有障碍,并提供克服这些障碍的指导。在本政策与实践综述中,我们概述了该工作组面临的挑战和经验教训,为神经退行性疾病领域提供良好实践案例以及关于如何克服数据共享障碍的建议。这些障碍涵盖与跨部门合作研究计划独特结构相关的组织问题,以及影响单个数据集存储、结构和注释的技术问题。我们还识别了社会技术障碍,比如不利于数据共享的学术认可和奖励制度,以及与数据隐私风险认知加剧相关的法律挑战,因缺乏关于公私合作研究中通用数据保护条例(GDPR)合规机制的明确指导而更加复杂。以现实世界中的神经成像和数字生物标志物数据为重点,我们突出了数据共享面临的特定挑战和经验教训,如数据管理规划、道德行为准则的制定以及协议与管理流程的协调统一。贯穿各领域的解决方案和推动因素包括透明度、标准化和共同设计原则——从增强数据可发现性的开放、可访问的元数据目录,到提高数据重用的可见性和信任度的措施。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/716c/10397390/034ae623c383/fneur-14-1187095-g001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验