Suppr超能文献

基于深度融合连接网络的多层压缩感知 MRI 重建。

Multi-slice compressed sensing MRI reconstruction based on deep fusion connection network.

机构信息

Department of Electronic Science, Fujian Provincial Key Laboratory of Plasma and Magnetic Resonance, Xiamen University, Xiamen 361005, China.

Department of Electronic Science, Fujian Provincial Key Laboratory of Plasma and Magnetic Resonance, Xiamen University, Xiamen 361005, China.

出版信息

Magn Reson Imaging. 2022 Nov;93:115-127. doi: 10.1016/j.mri.2022.08.007. Epub 2022 Aug 6.

Abstract

Recently, magnetic resonance imaging (MRI) reconstruction based on deep learning has become popular. Nevertheless, reconstruction of highly undersampled MR images is still challenging due to severe aliasing effects. In this study we built a deep fusion connection network (DFCN) to efficiently utilize the correlation information between adjacent slices. The proposed method was evaluated with online public IXI dataset and Calgary-Campinas-359 dataset. The results show that DFCN can generate the best reconstruction images in de-aliasing and restoring tissue structure compared with several state-of-the-art methods. The mean value of the peak signal-to-noise ratio could reach 34.16 dB, the mean value of the structural similarity is 0.9626, and the mean value of the normalized mean square error is 0.1144 on T-weighted brain data of IXI dataset under 10× acceleration. Additionally, the mean value of the peak signal-to-noise ratio could reach 30.17 dB, the mean value of the structural similarity is 0.9259, and the mean value of the normalized mean square error is 0.1294 on T-weighted brain data of Calgary-Campinas-359 dataset under 10× acceleration. With the correlation information between adjacent slices as prior knowledge, our method can dramatically eliminate aliasing effects and enhance the reconstruction quality of undersampled MR images.

摘要

最近,基于深度学习的磁共振成像(MRI)重建技术变得流行起来。然而,由于严重的混叠效应,高度欠采样的 MR 图像的重建仍然具有挑战性。在这项研究中,我们构建了一个深度融合连接网络(DFCN),以有效地利用相邻切片之间的相关信息。该方法在在线公共 IXI 数据集和 Calgary-Campinas-359 数据集上进行了评估。结果表明,与几种最先进的方法相比,DFCN 可以在去混叠和恢复组织结构方面生成最佳的重建图像。在 IXI 数据集的 T 加权脑数据下,在 10×加速比下,峰值信噪比的平均值可达 34.16dB,结构相似性的平均值为 0.9626,归一化均方误差的平均值为 0.1144。此外,在 Calgary-Campinas-359 数据集的 T 加权脑数据下,在 10×加速比下,峰值信噪比的平均值可达 30.17dB,结构相似性的平均值为 0.9259,归一化均方误差的平均值为 0.1294。通过利用相邻切片之间的相关信息作为先验知识,我们的方法可以显著消除混叠效应,提高欠采样 MR 图像的重建质量。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验