Sella Nadir, Hamy Anne-Sophie, Cabeli Vincent, Darrigues Lauren, Laé Marick, Reyal Fabien, Isambert Hervé
Institut Roche, Boulogne-Billancourt, France.
Residual Tumor & Response to Treatment Laboratory, RT2Lab, INSERM, U932 Immunity and Cancer, Universite Paris CiteInstitut Curie, Paris, 75248, France.
NPJ Digit Med. 2022 Aug 10;5(1):113. doi: 10.1038/s41746-022-00647-0.
Despite unprecedented amount of information now available in medical records, health data remain underexploited due to their heterogeneity and complexity. Simple charts and hypothesis-driven statistics can no longer apprehend the content of information-rich clinical data. There is, therefore, a clear need for powerful interactive visualization tools enabling medical practitioners to perceive the patterns and insights gained by state-of-the-art machine learning algorithms. Here, we report an interactive graphical interface for use as the front end of a machine learning causal inference server (MIIC), to facilitate the visualization and comprehension by clinicians of relationships between clinically relevant variables. The widespread use of such tools, facilitating the interactive exploration of datasets, is crucial both for data visualization and for the generation of research hypotheses. We demonstrate the utility of the MIIC interactive interface, by exploring the clinical network of a large cohort of breast cancer patients treated with neoadjuvant chemotherapy (NAC). This example highlights, in particular, the direct and indirect links between post-NAC clinical responses and patient survival. The MIIC interactive graphical interface has the potential to help clinicians identify actionable nodes and edges in clinical networks, thereby ultimately improving the patient care pathway.
尽管现在医疗记录中已有前所未有的大量信息,但由于其异质性和复杂性,健康数据仍未得到充分利用。简单的图表和假设驱动的统计方法已无法理解信息丰富的临床数据的内容。因此,迫切需要强大的交互式可视化工具,使医学从业者能够感知通过先进机器学习算法获得的模式和见解。在此,我们报告了一个交互式图形界面,用作机器学习因果推理服务器(MIIC)的前端,以促进临床医生对临床相关变量之间关系的可视化和理解。此类工具的广泛使用,有助于对数据集进行交互式探索,这对于数据可视化和研究假设的生成都至关重要。我们通过探索一大群接受新辅助化疗(NAC)治疗的乳腺癌患者的临床网络,展示了MIIC交互式界面的效用。这个例子特别突出了NAC后临床反应与患者生存之间的直接和间接联系。MIIC交互式图形界面有潜力帮助临床医生识别临床网络中可采取行动的节点和边,从而最终改善患者护理路径。