Suppr超能文献

来自大型乳腺癌队列的全球临床网络的交互式探索。

Interactive exploration of a global clinical network from a large breast cancer cohort.

作者信息

Sella Nadir, Hamy Anne-Sophie, Cabeli Vincent, Darrigues Lauren, Laé Marick, Reyal Fabien, Isambert Hervé

机构信息

Institut Roche, Boulogne-Billancourt, France.

Residual Tumor & Response to Treatment Laboratory, RT2Lab, INSERM, U932 Immunity and Cancer, Universite Paris CiteInstitut Curie, Paris, 75248, France.

出版信息

NPJ Digit Med. 2022 Aug 10;5(1):113. doi: 10.1038/s41746-022-00647-0.

Abstract

Despite unprecedented amount of information now available in medical records, health data remain underexploited due to their heterogeneity and complexity. Simple charts and hypothesis-driven statistics can no longer apprehend the content of information-rich clinical data. There is, therefore, a clear need for powerful interactive visualization tools enabling medical practitioners to perceive the patterns and insights gained by state-of-the-art machine learning algorithms. Here, we report an interactive graphical interface for use as the front end of a machine learning causal inference server (MIIC), to facilitate the visualization and comprehension by clinicians of relationships between clinically relevant variables. The widespread use of such tools, facilitating the interactive exploration of datasets, is crucial both for data visualization and for the generation of research hypotheses. We demonstrate the utility of the MIIC interactive interface, by exploring the clinical network of a large cohort of breast cancer patients treated with neoadjuvant chemotherapy (NAC). This example highlights, in particular, the direct and indirect links between post-NAC clinical responses and patient survival. The MIIC interactive graphical interface has the potential to help clinicians identify actionable nodes and edges in clinical networks, thereby ultimately improving the patient care pathway.

摘要

尽管现在医疗记录中已有前所未有的大量信息,但由于其异质性和复杂性,健康数据仍未得到充分利用。简单的图表和假设驱动的统计方法已无法理解信息丰富的临床数据的内容。因此,迫切需要强大的交互式可视化工具,使医学从业者能够感知通过先进机器学习算法获得的模式和见解。在此,我们报告了一个交互式图形界面,用作机器学习因果推理服务器(MIIC)的前端,以促进临床医生对临床相关变量之间关系的可视化和理解。此类工具的广泛使用,有助于对数据集进行交互式探索,这对于数据可视化和研究假设的生成都至关重要。我们通过探索一大群接受新辅助化疗(NAC)治疗的乳腺癌患者的临床网络,展示了MIIC交互式界面的效用。这个例子特别突出了NAC后临床反应与患者生存之间的直接和间接联系。MIIC交互式图形界面有潜力帮助临床医生识别临床网络中可采取行动的节点和边,从而最终改善患者护理路径。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/cb7d/9365762/8adb8a4f0190/41746_2022_647_Fig1_HTML.jpg

相似文献

1
Interactive exploration of a global clinical network from a large breast cancer cohort.
NPJ Digit Med. 2022 Aug 10;5(1):113. doi: 10.1038/s41746-022-00647-0.
2
MIIC online: a web server to reconstruct causal or non-causal networks from non-perturbative data.
Bioinformatics. 2018 Jul 1;34(13):2311-2313. doi: 10.1093/bioinformatics/btx844.
3
Learning clinical networks from medical records based on information estimates in mixed-type data.
PLoS Comput Biol. 2020 May 18;16(5):e1007866. doi: 10.1371/journal.pcbi.1007866. eCollection 2020 May.
4
Towards human-computer synergetic analysis of large-scale biological data.
BMC Bioinformatics. 2013;14 Suppl 14(Suppl 14):S10. doi: 10.1186/1471-2105-14-S14-S10. Epub 2013 Oct 9.
6
Learning causal networks with latent variables from multivariate information in genomic data.
PLoS Comput Biol. 2017 Oct 2;13(10):e1005662. doi: 10.1371/journal.pcbi.1005662. eCollection 2017 Oct.
7
An algorithm for direct causal learning of influences on patient outcomes.
Artif Intell Med. 2017 Jan;75:1-15. doi: 10.1016/j.artmed.2016.10.003. Epub 2016 Nov 5.
8
The future of Cochrane Neonatal.
Early Hum Dev. 2020 Nov;150:105191. doi: 10.1016/j.earlhumdev.2020.105191. Epub 2020 Sep 12.
10
Interactive exploration of implicit and explicit relations in faceted datasets.
IEEE Trans Vis Comput Graph. 2013 Dec;19(12):2080-9. doi: 10.1109/TVCG.2013.167.

引用本文的文献

1
CausalCCC: a web server to explore intracellular causal pathways enabling cell-cell communication.
Nucleic Acids Res. 2025 Jul 7;53(W1):W125-W131. doi: 10.1093/nar/gkaf404.
4
Learning interpretable causal networks from very large datasets, application to 400,000 medical records of breast cancer patients.
iScience. 2024 Apr 16;27(5):109736. doi: 10.1016/j.isci.2024.109736. eCollection 2024 May 17.
5
Trend of Women's Health Research in Korea, 2012-2020: Topic and Text Network Analysis.
J Korean Med Sci. 2023 Jul 31;38(30):e226. doi: 10.3346/jkms.2023.38.e226.

本文引用的文献

1
Learning clinical networks from medical records based on information estimates in mixed-type data.
PLoS Comput Biol. 2020 May 18;16(5):e1007866. doi: 10.1371/journal.pcbi.1007866. eCollection 2020 May.
2
Comedications influence immune infiltration and pathological response to neoadjuvant chemotherapy in breast cancer.
Oncoimmunology. 2019 Nov 14;9(1):1677427. doi: 10.1080/2162402X.2019.1677427. eCollection 2020.
4
Neoadjuvant treatment: the future of patients with breast cancer.
ESMO Open. 2018 May 17;3(4):e000371. doi: 10.1136/esmoopen-2018-000371. eCollection 2018.
6
Lymphovascular invasion after neoadjuvant chemotherapy is strongly associated with poor prognosis in breast carcinoma.
Breast Cancer Res Treat. 2018 Jun;169(2):295-304. doi: 10.1007/s10549-017-4610-0. Epub 2018 Jan 27.
7
MIIC online: a web server to reconstruct causal or non-causal networks from non-perturbative data.
Bioinformatics. 2018 Jul 1;34(13):2311-2313. doi: 10.1093/bioinformatics/btx844.
9
Learning causal networks with latent variables from multivariate information in genomic data.
PLoS Comput Biol. 2017 Oct 2;13(10):e1005662. doi: 10.1371/journal.pcbi.1005662. eCollection 2017 Oct.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验