Suppr超能文献

基于 P300 的图形认证系统设计分类方法的比较研究。

A comparative study of classification methods for designing a pictorial P300-based authentication system.

机构信息

ICE Department, Dr. B. R. Ambedkar NIT Jalandhar, Jalandhar, India.

出版信息

Med Biol Eng Comput. 2022 Oct;60(10):2899-2916. doi: 10.1007/s11517-022-02626-9. Epub 2022 Aug 10.

Abstract

The response of the P300-based speller is associated with factors like matrix size, inter-stimulus interval, and flashing period. This study proposes the comparison of the novel 2 × 2 image-based speller with the traditional 6 × 6 character-based speller to analyze the effects of the stimulus on the accuracy and information transfer rates. To determine the best classification methodology for the approach suggested, a comparative study was performed using linear and quadratic discrimination analysis, K-nearest neighbor, and support vector machine. In the proposed paradigm, four pictures (objects, special symbols, geometrical shapes, and colors) were randomly placed at four corners of the monitor. Subjects were asked to focus on the target image while ignoring all other images. The proposed method outperformed the traditional method, with an average accuracy of 96.99 ± 1.64% and 86.74 ± 5.19%, respectively, and information transfer rates of 33.82 ± 0.57 bits/min and 23.35 ± 0.79 bits/min, respectively. Results show that a modified speller can play a significant role in optimizing brain-computer interface-driven applications. A repeated measure ANOVA test was performed, which concluded that the improved results are obtained using QDA classifiers in terms of mean accuracy, speed, and error rates.

摘要

基于 P300 的拼写器的响应与矩阵大小、刺激间间隔和闪烁周期等因素有关。本研究提出将新颖的 2×2 图像基拼写器与传统的 6×6 字符基拼写器进行比较,以分析刺激对准确性和信息传输率的影响。为了确定所提出方法的最佳分类方法,使用线性和二次判别分析、K-最近邻和支持向量机进行了比较研究。在所提出的范式中,将四张图片(物体、特殊符号、几何形状和颜色)随机放置在显示器的四个角上。要求受试者集中注意力于目标图像,同时忽略所有其他图像。所提出的方法优于传统方法,平均准确率分别为 96.99±1.64%和 86.74±5.19%,信息传输率分别为 33.82±0.57 位/分钟和 23.35±0.79 位/分钟。结果表明,修改后的拼写器可以在优化脑机接口驱动的应用程序中发挥重要作用。进行了重复测量方差分析,结论是使用 QDA 分类器在平均准确率、速度和错误率方面获得了改进的结果。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验