Institute for Theoretical Biology, Charité, Universitätsmedizin Berlin, Humboldt University of Berlin, Philippstr. 13, 10115, Berlin, Germany.
Biochemistry Center, University of Heidelberg, Im Neuenheimer Feld 328, 69120, Heidelberg, Germany.
Sci Rep. 2020 Dec 17;10(1):22224. doi: 10.1038/s41598-020-79277-z.
Theory predicts that self-sustained oscillations require robust delays and nonlinearities (ultrasensitivity). Delayed negative feedback loops with switch-like inhibition of transcription constitute the core of eukaryotic circadian clocks. The kinetics of core clock proteins such as PER2 in mammals and FRQ in Neurospora crassa is governed by multiple phosphorylations. We investigate how multiple, slow and random phosphorylations control delay and molecular switches. We model phosphorylations of intrinsically disordered clock proteins (IDPs) using conceptual models of sequential and distributive phosphorylations. Our models help to understand the underlying mechanisms leading to delays and ultrasensitivity. The model shows temporal and steady state switches for the free kinase and the phosphoprotein. We show that random phosphorylations and sequestration mechanisms allow high Hill coefficients required for self-sustained oscillations.
理论预测,自维持振荡需要稳健的延迟和非线性(超敏性)。具有转录抑制开关样特性的延迟负反馈回路构成了真核生物钟的核心。哺乳动物中的 PER2 和粗糙脉孢菌中的 FRQ 等核心时钟蛋白的动力学受多种磷酸化的控制。我们研究了多个缓慢随机磷酸化如何控制延迟和分子开关。我们使用顺序和分布磷酸化的概念模型来对内在无序的时钟蛋白(IDP)的磷酸化进行建模。我们的模型有助于理解导致延迟和超敏性的潜在机制。该模型显示了游离激酶和磷酸化蛋白的时间和稳态开关。我们表明,随机磷酸化和隔离机制允许自维持振荡所需的高希尔系数。