Ma Zhenwei, Bourquard Claire, Gao Qiman, Jiang Shuaibing, De Iure-Grimmel Tristan, Huo Ran, Li Xuan, He Zixin, Yang Zhen, Yang Galen, Wang Yixiang, Lam Edmond, Gao Zu-Hua, Supponen Outi, Li Jianyu
Department of Mechanical Engineering, McGill University, Montréal, Quebec H3A 0C3, Canada.
Institute of Fluid Dynamics, Department of Mechanical and Process Engineering, ETH Zürich, 8092 Zürich, Switzerland.
Science. 2022 Aug 12;377(6607):751-755. doi: 10.1126/science.abn8699. Epub 2022 Aug 11.
Tough bioadhesion has important implications in engineering and medicine but remains challenging to form and control. We report an ultrasound (US)-mediated strategy to achieve tough bioadhesion with controllability and fatigue resistance. Without chemical reaction, the US can amplify the adhesion energy and interfacial fatigue threshold between hydrogels and porcine skin by up to 100 and 10 times. Combined experiments and theoretical modeling suggest that the key mechanism is US-induced cavitation, which propels and immobilizes anchoring primers into tissues with mitigated barrier effects. Our strategy achieves spatial patterning of tough bioadhesion, on-demand detachment, and transdermal drug delivery. This work expands the material repertoire for tough bioadhesion and enables bioadhesive technologies with high-level controllability.
强韧生物粘附在工程和医学领域具有重要意义,但形成和控制仍具有挑战性。我们报道了一种超声介导的策略,可实现具有可控性和抗疲劳性的强韧生物粘附。在无化学反应的情况下,超声可将水凝胶与猪皮之间的粘附能和界面疲劳阈值分别放大至100倍和10倍。结合实验和理论模型表明,关键机制是超声诱导的空化作用,它能推动并固定锚定引物进入组织,同时减轻屏障效应。我们的策略实现了强韧生物粘附的空间图案化、按需分离和透皮给药。这项工作扩展了强韧生物粘附的材料种类,并实现了具有高度可控性的生物粘附技术。