Suppr超能文献

卵巢浆液性囊腺癌诊断中基因表达生物标志物的全基因组鉴定与验证

Genome-Wide Identification and Validation of Gene Expression Biomarkers in the Diagnosis of Ovarian Serous Cystadenocarcinoma.

作者信息

Zalfa Francesca, Perrone Maria Grazia, Ferorelli Savina, Laera Luna, Pierri Ciro Leonardo, Tolomeo Anna, Dimiccoli Vincenzo, Perrone Giuseppe, De Grassi Anna, Scilimati Antonio

机构信息

Predictive Molecular Diagnostic Unit, Pathology Department, Fondazione Policlinico Universitario Campus Bio-Medico, 00128 Rome, Italy.

Microscopic and Ultrastructural Anatomy Unit, CIR, Fondazione Policlinico Universitario Campus Bio-Medico, 00128 Rome, Italy.

出版信息

Cancers (Basel). 2022 Aug 2;14(15):3764. doi: 10.3390/cancers14153764.

Abstract

Ovarian cancer is the second most prevalent gynecologic malignancy, and ovarian serous cystadenocarcinoma (OSCA) is the most common and lethal subtype of ovarian cancer. Current screening methods have strong limits on early detection, and the majority of OSCA patients relapse. In this work, we developed and cross-validated a method for detecting gene expression biomarkers able to discriminate OSCA tissues from healthy ovarian tissues and other cancer types with high accuracy. A preliminary ranking-based approach was applied, resulting in a panel of 41 over-expressed genes in OSCA. The RNA quantity gene expression of the 41 selected genes was then cross-validated by using NanoString nCounter technology. Moreover, we showed that the RNA quantity of eight genes (, , , , , , and ) discriminates each OSCA sample from each healthy sample in our data set with sensitivity of 100% and specificity of 100%. For the other three genes (, and ) in combination, their RNA quantity may distinguish OSCA from other 29 tumor types.

摘要

卵巢癌是第二常见的妇科恶性肿瘤,卵巢浆液性囊腺癌(OSCA)是卵巢癌最常见且致死率最高的亚型。目前的筛查方法在早期检测方面存在很大局限性,大多数OSCA患者会复发。在这项研究中,我们开发并交叉验证了一种检测基因表达生物标志物的方法,该方法能够高精度地区分OSCA组织与健康卵巢组织以及其他癌症类型。我们应用了一种基于初步排名的方法,得到了一组在OSCA中过表达的41个基因。然后使用NanoString nCounter技术对所选41个基因的RNA定量基因表达进行交叉验证。此外,我们发现,在我们的数据集中,八个基因(此处原文缺失基因具体名称)的RNA量能够以100%的敏感性和100%的特异性区分每个OSCA样本与每个健康样本。对于另外三个基因(此处原文缺失基因具体名称)组合而言,它们的RNA量可能将OSCA与其他29种肿瘤类型区分开来。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2188/9367275/4e0529c6bbbb/cancers-14-03764-g001.jpg

相似文献

2
A novel multiple biomarker panel for the early detection of high-grade serous ovarian carcinoma.
Gynecol Oncol. 2018 Jun;149(3):585-591. doi: 10.1016/j.ygyno.2018.03.050. Epub 2018 Mar 21.
3
[Clinical features and drug resistance characteristics of ovarian clear cell adenocarcinoma and analysis of its prognostic factors].
Zhonghua Zhong Liu Za Zhi. 2012 Sep;34(9):688-91. doi: 10.3760/cma.j.issn.0253-3766.2012.09.010.
6
[Significance and expression of PAX8, PAX2, p53 and RAS in ovary and fallopian tubes to origin of ovarian high grade serous carcinoma].
Zhonghua Fu Chan Ke Za Zhi. 2017 Oct 25;52(10):687-696. doi: 10.3760/cma.j.issn.0529-567X.2017.10.008.
7
A novel serum microRNA panel to discriminate benign from malignant ovarian disease.
Cancer Lett. 2015 Jan 28;356(2 Pt B):628-36. doi: 10.1016/j.canlet.2014.10.010. Epub 2014 Oct 16.
8
Mining TCGA database for gene expression in ovarian serous cystadenocarcinoma microenvironment.
PeerJ. 2021 May 4;9:e11375. doi: 10.7717/peerj.11375. eCollection 2021.
9
Salivary transcriptomic biomarkers for detection of ovarian cancer: for serous papillary adenocarcinoma.
J Mol Med (Berl). 2012 Apr;90(4):427-34. doi: 10.1007/s00109-011-0829-0. Epub 2011 Nov 18.

引用本文的文献

2
Exosomes in Ovarian Cancer: Towards Precision Oncology.
Pharmaceuticals (Basel). 2025 Mar 5;18(3):371. doi: 10.3390/ph18030371.
4
MUC16: clinical targets with great potential.
Clin Exp Med. 2024 May 17;24(1):101. doi: 10.1007/s10238-024-01365-5.
5
Recent Insight about HE4 Role in Ovarian Cancer Oncogenesis.
Int J Mol Sci. 2023 Jun 22;24(13):10479. doi: 10.3390/ijms241310479.
6
Through the Looking Glass: Updated Insights on Ovarian Cancer Diagnostics.
Diagnostics (Basel). 2023 Feb 14;13(4):713. doi: 10.3390/diagnostics13040713.

本文引用的文献

1
Fluorochrome Selection for Imaging Intraoperative Ovarian Cancer Probes.
Pharmaceuticals (Basel). 2022 May 26;15(6):668. doi: 10.3390/ph15060668.
2
Candidate RNA biomarkers in biofluids for early diagnosis of ovarian cancer: A systematic review.
Gynecol Oncol. 2021 Feb;160(2):633-642. doi: 10.1016/j.ygyno.2020.11.018. Epub 2020 Nov 27.
3
Biomarkers and Strategies for Early Detection of Ovarian Cancer.
Cancer Epidemiol Biomarkers Prev. 2020 Dec;29(12):2504-2512. doi: 10.1158/1055-9965.EPI-20-1057. Epub 2020 Oct 13.
4
Ovarian Cancer Biomarkers: Moving Forward in Early Detection.
Adv Exp Med Biol. 2020;1219:355-363. doi: 10.1007/978-3-030-34025-4_18.
5
Improved early detection of ovarian cancer using longitudinal multimarker models.
Br J Cancer. 2020 Mar;122(6):847-856. doi: 10.1038/s41416-019-0718-9. Epub 2020 Jan 15.
6
Translational Theragnosis of Ovarian Cancer: where do we stand?
Curr Med Chem. 2020;27(34):5675-5715. doi: 10.2174/0929867326666190816232330.
7
Targeting COX-1 by mofezolac-based fluorescent probes for ovarian cancer detection.
Eur J Med Chem. 2019 Oct 1;179:16-25. doi: 10.1016/j.ejmech.2019.06.039. Epub 2019 Jun 15.
8
A Systematic Investigation of the Malignant Functions and Diagnostic Potential of the Cancer Secretome.
Cell Rep. 2019 Mar 5;26(10):2622-2635.e5. doi: 10.1016/j.celrep.2019.02.025.
9
Tumor evolution and chemoresistance in ovarian cancer.
NPJ Precis Oncol. 2018 Sep 17;2:20. doi: 10.1038/s41698-018-0063-0. eCollection 2018.
10
Comprehensive analysis of normal adjacent to tumor transcriptomes.
Nat Commun. 2017 Oct 20;8(1):1077. doi: 10.1038/s41467-017-01027-z.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验