Suppr超能文献

复杂场景下基于因子图优化的无人机定位算法

UAV Localization Algorithm Based on Factor Graph Optimization in Complex Scenes.

作者信息

Dai Jun, Liu Songlin, Hao Xiangyang, Ren Zongbin, Yang Xiao

机构信息

Institute of Geospatial Information, Information Engineering University, Zhengzhou 450001, China.

School of Aerospace Engineering, Zhengzhou University of Aeronautics, Zhengzhou 450001, China.

出版信息

Sensors (Basel). 2022 Aug 5;22(15):5862. doi: 10.3390/s22155862.

Abstract

With the increasingly widespread application of UAV intelligence, the need for autonomous navigation and positioning is becoming more and more important. To solve the problem that UAV cannot perform localization in complex scenes, a new multi-source fusion framework factor graph optimization algorithm is used for UAV localization state estimation in this paper, which is based on IMU/GNSS/VO multi-source sensors. Based on the factor graph model and the iSAM incremental inference algorithm, a multi-source fusion model of IMU/GNSS/VO is established, including the IMU pre-integration factor, IMU bias factor, GNSS factor, and VO factor. Mathematical simulations and validations on the EuRoC dataset show that, when the selected sliding window size is 30, the factor graph optimization (FGO) algorithm can not only meet the requirements of real time and accuracy at the same time, but it also achieves a plug-and-play function in the event of local sensor failures. Finally, compared with the traditional federated Kalman algorithm and the adaptive federated Kalman algorithm, the positioning accuracy of the FGO algorithm in this paper is improved by 1.5-2-fold, and can effectively improve autonomous navigation system robustness and flexibility in complex scenarios. Moreover, the multi-source fusion framework in this paper is a general algorithm framework that can satisfy other scenarios and other types of sensor combinations.

摘要

随着无人机智能应用的日益广泛,自主导航与定位的需求变得越来越重要。为了解决无人机在复杂场景下无法进行定位的问题,本文采用一种基于IMU/GNSS/VO多源传感器的新型多源融合框架因子图优化算法用于无人机定位状态估计。基于因子图模型和iSAM增量推理算法,建立了IMU/GNSS/VO多源融合模型,包括IMU预积分因子、IMU偏差因子、GNSS因子和VO因子。在EuRoC数据集上进行的数学仿真与验证表明,当所选滑动窗口大小为30时,因子图优化(FGO)算法不仅能同时满足实时性和准确性要求,而且在局部传感器故障情况下还能实现即插即用功能。最后,与传统联邦卡尔曼算法和自适应联邦卡尔曼算法相比,本文的FGO算法定位精度提高了1.5至2倍,能有效提高复杂场景下自主导航系统的鲁棒性和灵活性。此外,本文中的多源融合框架是一种通用算法框架,可满足其他场景及其他类型的传感器组合。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9d67/9370926/740dcdf95de0/sensors-22-05862-g001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验