Henschke Jakob, Kaplick Hannes, Wochatz Monique, Engel Tilman
Department for sports medicine and sports orthopedics, University Outpatient Clinic University of Potsdam Potsdam Germany.
Health Sci Rep. 2022 Aug 10;5(5):e772. doi: 10.1002/hsr2.772. eCollection 2022 Sep.
Wearable inertial sensors may offer additional kinematic parameters of the shoulder compared to traditional instruments such as goniometers when elaborate and time-consuming data processing procedures are undertaken. However, in clinical practice simple-real time motion analysis is required to improve clinical reasoning. Therefore, the aim was to assess the criterion validity between a portable "off-the-shelf" sensor-software system (IMU) and optical motion (Mocap) for measuring kinematic parameters during active shoulder movements.
24 healthy participants (9 female, 15 male, age 29 ± 4 years, height 177 ± 11 cm, weight 73 ± 14 kg) were included. Range of motion (ROM), total range of motion (TROM), peak and mean angular velocity of both systems were assessed during simple (abduction/adduction, horizontal flexion/horizontal extension, vertical flexion/extension, and external/internal rotation) and complex shoulder movements. Criterion validity was determined using intraclass-correlation coefficients (ICC), root mean square error (RMSE) and Bland and Altmann analysis (bias; upper and lower limits of agreement).
ROM and TROM analysis revealed inconsistent validity during simple (ICC: 0.040-0.733, RMSE: 9.7°-20.3°, bias: 1.2°-50.7°) and insufficient agreement during complex shoulder movements (ICC: 0.104-0.453, RMSE: 10.1°-23.3°, bias: 1.0°-55.9°). Peak angular velocity (ICC: 0.202-0.865, RMSE: 14.6°/s-26.7°/s, bias: 10.2°/s-29.9°/s) and mean angular velocity (ICC: 0.019-0.786, RMSE:6.1°/s-34.2°/s, bias: 1.6°/s-27.8°/s) were inconsistent.
The "off-the-shelf" sensor-software system showed overall insufficient agreement with the gold standard. Further development of commercial IMU-software-solutions may increase measurement accuracy and permit their integration into everyday clinical practice.
与传统仪器(如测角仪)相比,当采用精细且耗时的数据处理程序时,可穿戴惯性传感器可能会提供更多的肩部运动学参数。然而,在临床实践中,需要简单的实时运动分析来改善临床推理。因此,本研究旨在评估一种便携式“现成”传感器 - 软件系统(惯性测量单元,IMU)与光学运动捕捉系统(Mocap)在测量主动肩部运动时运动学参数方面的标准效度。
纳入24名健康参与者(9名女性,15名男性,年龄29±4岁,身高177±11厘米,体重73±14千克)。在简单肩部运动(外展/内收、水平屈曲/水平伸展、垂直屈曲/伸展以及外旋/内旋)和复杂肩部运动过程中,评估两个系统的运动范围(ROM)、总运动范围(TROM)、峰值角速度和平均角速度。使用组内相关系数(ICC)、均方根误差(RMSE)以及布兰德 - 奥特曼分析(偏差;一致性的上限和下限)来确定标准效度。
ROM和TROM分析显示,在简单肩部运动期间效度不一致(ICC:0.040 - 0.733,RMSE:9.7° - 20.3°,偏差:1.2° - 50.7°),在复杂肩部运动期间一致性不足(ICC:0.104 - 0.453,RMSE:10.1° - 23.3°,偏差:1.0° - 55.9°)。峰值角速度(ICC:0.202 - 0.865,RMSE:14.6°/秒 - 26.7°/秒,偏差:10.2°/秒 - 29.9°/秒)和平均角速度(ICC:0.019 - 0.786,RMSE:6.1°/秒 - 34.2°/秒,偏差:1.6°/秒 - 27.8°/秒)也不一致。
“现成”的传感器 - 软件系统与金标准相比总体一致性不足。商业IMU - 软件解决方案的进一步开发可能会提高测量准确性,并使其能够整合到日常临床实践中。