State Key Laboratory of Crop Stress Biology for Arid Areas, College of Plant Protection, Northwest A&F University, Yangling, Shaanxi 712100, China.
State Key Laboratory of Crop Stress Biology for Arid Areas, College of Life Science, Northwest A&F University, Yangling, Shaanxi 712100, China.
Plant Cell. 2022 Oct 27;34(11):4472-4494. doi: 10.1093/plcell/koac248.
Drought is a major environmental factor limiting wheat production worldwide. However, the genetic components underlying wheat drought tolerance are largely unknown. Here, we identify a DREB transcription factor gene (TaDTG6-B) by genome-wide association study that is tightly associated with drought tolerance in wheat. Candidate gene association analysis revealed that a 26-bp deletion in the TaDTG6-B coding region induces a gain-of-function for TaDTG6-BDel574, which exhibits stronger transcriptional activation, protein interactions, and binding activity to dehydration-responsive elements (DRE)/CRT cis-elements than the TaDTG6-BIn574 encoded by the allele lacking the deletion, thus conferring greater drought tolerance in wheat seedlings harboring this variant. Knockdown of TaDTG6-BDel574 transcripts attenuated drought tolerance in transgenic wheat, whereas its overexpression resulted in enhanced drought tolerance without accompanying phenotypic abnormalities. Furthermore, the introgression of the TaDTG6-BDel574 elite allele into drought-sensitive cultivars improved their drought tolerance, thus providing a valuable genetic resource for wheat breeding. We also identified 268 putative target genes that are directly bound and transcriptionally regulated by TaDTG6-BDel574. Further analysis showed that TaDTG6-BDel574 positively regulates TaPIF1 transcription to enhance wheat drought tolerance. These results describe the genetic basis and accompanying mechanism driving phenotypic variation in wheat drought tolerance, and provide a novel genetic resource for crop breeding programs.
干旱是全球范围内限制小麦生产的主要环境因素。然而,小麦耐旱性的遗传组成在很大程度上是未知的。在这里,我们通过全基因组关联研究鉴定了一个 DREB 转录因子基因(TaDTG6-B),该基因与小麦的耐旱性密切相关。候选基因关联分析表明,TaDTG6-B 编码区的 26-bp 缺失导致 TaDTG6-BDel574 获得功能,TaDTG6-BDel574 表现出更强的转录激活、蛋白相互作用以及与脱水响应元件(DRE)/ CRT 顺式元件的结合活性,而缺乏缺失的等位基因编码的 TaDTG6-BIn574 则表现出更强的耐旱性,因此在含有该变体的小麦幼苗中表现出更强的耐旱性。敲低 TaDTG6-BDel574 转录本会减弱转基因小麦的耐旱性,而其过表达则导致耐旱性增强而无伴随的表型异常。此外,将 TaDTG6-BDel574 优良等位基因导入耐旱性敏感品种可提高其耐旱性,从而为小麦育种提供了有价值的遗传资源。我们还鉴定了 268 个可能的靶基因,这些基因直接被 TaDTG6-BDel574 结合并转录调控。进一步分析表明,TaDTG6-BDel574 正向调控 TaPIF1 转录以增强小麦耐旱性。这些结果描述了驱动小麦耐旱性表型变异的遗传基础和伴随机制,并为作物育种计划提供了一种新的遗传资源。