Suppr超能文献

基于深度学习的肺部病变支气管内超声图像诊断。

Deep learning-based diagnosis from endobronchial ultrasonography images of pulmonary lesions.

机构信息

Department of Internal Medicine, Division of Medical Oncology and Respiratory Medicine, Shimane University, 89-1 Enya-cho, Izumo, Shimane, 693-8501, Japan.

出版信息

Sci Rep. 2022 Aug 12;12(1):13710. doi: 10.1038/s41598-022-17976-5.

Abstract

Endobronchial ultrasonography with a guide sheath (EBUS-GS) improves the accuracy of bronchoscopy. The possibility of differentiating benign from malignant lesions based on EBUS findings may be useful in making the correct diagnosis. The convolutional neural network (CNN) model investigated whether benign or malignant (lung cancer) lesions could be predicted based on EBUS findings. This was an observational, single-center cohort study. Using medical records, patients were divided into benign and malignant groups. We acquired EBUS data for 213 participants. A total of 2,421,360 images were extracted from the learning dataset. We trained and externally validated a CNN algorithm to predict benign or malignant lung lesions. Test was performed using 26,674 images. The dataset was interpreted by four bronchoscopists. The accuracy, sensitivity, specificity, positive predictive value (PPV), and negative predictive value (NPV) of the CNN model for distinguishing benign and malignant lesions were 83.4%, 95.3%, 53.6%, 83.8%, and 82.0%, respectively. For the four bronchoscopists, the accuracy rate was 68.4%, sensitivity was 80%, specificity was 39.6%, PPV was 76.8%, and NPV was 44.2%. The developed EBUS-computer-aided diagnosis system is expected to read EBUS findings that are difficult for clinicians to judge with precision and help differentiate between benign lesions and lung cancers.

摘要

经支气管超声引导针吸活检术(EBUS-GS)可提高支气管镜检查的准确性。基于 EBUS 检查结果区分良性和恶性病变的可能性有助于做出正确的诊断。研究人员使用卷积神经网络(CNN)模型探讨了是否可以根据 EBUS 检查结果预测良性或恶性(肺癌)病变。这是一项观察性、单中心队列研究。研究人员通过病历将患者分为良性和恶性两组。共纳入 213 名参与者。从学习数据集中提取了总计 2,421,360 张图像。研究人员训练并外部验证了一个 CNN 算法,以预测良性或恶性肺病变。使用 26,674 张图像进行了测试。该数据集由四名支气管镜医生进行解读。CNN 模型区分良性和恶性病变的准确性、敏感度、特异性、阳性预测值(PPV)和阴性预测值(NPV)分别为 83.4%、95.3%、53.6%、83.8%和 82.0%。对于四名支气管镜医生,准确性分别为 68.4%、敏感度为 80%、特异性为 39.6%、PPV 为 76.8%、NPV 为 44.2%。开发的 EBUS-计算机辅助诊断系统有望精确解读临床医生难以判断的 EBUS 结果,并有助于区分良性病变和肺癌。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d20f/9374687/d591ae90c6d7/41598_2022_17976_Fig1_HTML.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验