Suppr超能文献

通过无监督学习在支气管镜图像上进行肿瘤检测。

Tumor detection on bronchoscopic images by unsupervised learning.

作者信息

Liu Qingqing, Zheng Haoliang, Jia Zhiwei, Shi Zhihui

机构信息

Department of Pulmonary and Critical Care Medicine, The Second Xiangya Hospital, Central South University, Changsha, 410011, Hunan, China.

Research Unit of Respiratory Disease, Central South University, Changsha, 410011, Hunan, China.

出版信息

Sci Rep. 2025 Jan 2;15(1):245. doi: 10.1038/s41598-024-81786-0.

Abstract

The diagnosis and early identification of intratracheal tumors relies on the experience of the operators and the specialists. Operations by physicians with insufficient experience may lead to misdiagnosis or misjudgment of tumors. To address this issue, a datasets for intratracheal tumor detection has been constructed to simulate the diagnostic level of experienced specialists, and a Knowledge Distillation-based Memory Feature Unsupervised Anomaly Detection (KD-MFAD) model was proposed to learn from this simulated experience. The unsupervised training approach could effectively deal with the irregular features of the tumorous appearance. The Downward Deformable Convolution Module (DDC) allowed the encoding phase to provide more detailed internal airway environment features. The Memory Matrix based on Convolutional Block focusing (CB-Mem) helped the student model store more meaningful normal sample features during training and disrupted the reconstruction of "tumor" images. Our model achieved an AUC-ROC of 97.60%, Acc of 93.33%, and F1-score of 94.94% on our self-built intratracheal endoscopy datasets, improving baseline performance by 5 to 10%. Our model also demonstrated superior performance over existing models in the public datasets in the same field.

摘要

气管内肿瘤的诊断和早期识别依赖于操作人员和专家的经验。经验不足的医生进行手术可能会导致对肿瘤的误诊或误判。为了解决这个问题,构建了一个用于气管内肿瘤检测的数据集来模拟经验丰富的专家的诊断水平,并提出了一种基于知识蒸馏的记忆特征无监督异常检测(KD-MFAD)模型,以从这种模拟经验中学习。无监督训练方法可以有效地处理肿瘤外观的不规则特征。向下可变形卷积模块(DDC)使编码阶段能够提供更详细的内部气道环境特征。基于卷积块聚焦的记忆矩阵(CB-Mem)帮助学生模型在训练期间存储更有意义的正常样本特征,并干扰“肿瘤”图像的重建。我们的模型在自建的气管内内窥镜数据集上实现了97.60%的AUC-ROC、93.33%的Acc和94.94%的F1分数,将基线性能提高了5%至10%。在同一领域的公共数据集中,我们的模型也表现出优于现有模型的性能。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/fec8/11696192/4b17d534c3ca/41598_2024_81786_Fig1_HTML.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验