Suppr超能文献

工程化噬菌体中含有抗 CRISPR 抑制物,可抑制耐抗生素铜绿假单胞菌的感染。

Engineered Bacteriophages Containing Anti-CRISPR Suppress Infection of Antibiotic-Resistant P. aeruginosa.

机构信息

Department of Critical Care Medicine, Frontiers Science Center for Disease-related Molecular Network, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, China.

Department of Biomedical Sciences, School of Medicine and Health Sciences, University of North Dakotagrid.266862.e, Grand Forks, North Dakota, USA.

出版信息

Microbiol Spectr. 2022 Oct 26;10(5):e0160222. doi: 10.1128/spectrum.01602-22. Epub 2022 Aug 16.

Abstract

The therapeutic use of bacteriophages (phages) provides great promise for treating multidrug-resistant (MDR) bacterial infections. However, an incomplete understanding of the interactions between phages and bacteria has negatively impacted the application of phage therapy. Here, we explored engineered anti-CRISPR (Acr) gene-containing phages (EATPs, eat Pseudomonas) by introducing Type I anti-CRISPR (, , and ) genes into the P. aeruginosa bacteriophage DMS3/DMS3m to render the potential for blocking P. aeruginosa replication and infection. In order to achieve effective antibacterial activities along with high safety against clinically isolated MDR P. aeruginosa through an anti-CRISPR immunity mechanism and , the inhibitory concentration for EATPs was 1 × 10 PFU/mL with a multiplicity of infection value of 0.2. In addition, the EATPs significantly suppressed the antibiotic resistance caused by a highly antibiotic-resistant PA14 infection. Collectively, these findings provide evidence that engineered phages may be an alternative, viable approach by which to treat patients with an intractable bacterial infection, especially an infection by clinically MDR bacteria that are unresponsive to conventional antibiotic therapy. Pseudomonas aeruginosa (P. aeruginosa) is an opportunistic Gram-negative bacterium that causes severe infection in immune-weakened individuals, especially patients with cystic fibrosis, burn wounds, cancer, or chronic obstructive pulmonary disease (COPD). Treating P. aeruginosa infection with conventional antibiotics is difficult due to its intrinsic multidrug resistance. Engineered bacteriophage therapeutics, acting as highly viable alternative treatments of multidrug-resistant (MDR) bacterial infections, have great potential to break through the evolutionary constraints of bacteriophages to create next-generation antimicrobials. Here, we found that engineered anti-CRISPR (Acr) gene-containing phages (EATPs, eat Pseudomonas) display effective antibacterial activities along with high safety against clinically isolated MDR P. aeruginosa through an anti-CRISPR immunity mechanism and . EATPs also significantly suppressed the antibiotic resistance caused by a highly antibiotic-resistant PA14 infection, which may provide novel insight toward developing bacteriophages to treat patients with intractable bacterial infections, especially infections by clinically MDR bacteria that are unresponsive to conventional antibiotic therapy.

摘要

噬菌体(phages)的治疗用途为治疗多重耐药(MDR)细菌感染提供了巨大的希望。然而,由于人们对噬菌体与细菌之间的相互作用缺乏充分了解,噬菌体疗法的应用受到了负面影响。在这里,我们通过将 I 型抗 CRISPR( , ,和 )基因引入铜绿假单胞菌噬菌体 DMS3/DMS3m 中,构建了含有工程化抗 CRISPR(Acr)基因的噬菌体(EATPs,eat Pseudomonas),从而使铜绿假单胞菌的复制和感染有被阻断的潜力。为了通过抗 CRISPR 免疫机制 和 达到有效抗菌活性和针对临床分离的 MDR 铜绿假单胞菌的高安全性,EATPs 的抑制浓度为 1×10 PFU/mL,感染复数值为 0.2。此外,EATPs 还显著抑制了高度耐药的 PA14 感染引起的抗生素耐药性。总的来说,这些发现为工程噬菌体可能是一种替代的、可行的方法提供了证据,可用于治疗难治性细菌感染的患者,特别是对抗生素治疗无反应的临床 MDR 细菌感染。铜绿假单胞菌(P. aeruginosa)是一种机会性革兰氏阴性菌,会导致免疫功能低下的个体(特别是囊性纤维化、烧伤、癌症或慢性阻塞性肺疾病(COPD)患者)发生严重感染。由于其内在的多药耐药性,用传统抗生素治疗铜绿假单胞菌感染很困难。作为治疗多重耐药(MDR)细菌感染的高度可行的替代疗法,工程噬菌体疗法具有很大的潜力,可以突破噬菌体的进化限制,创造下一代抗菌药物。在这里,我们发现,通过抗 CRISPR 免疫机制 和 ,含有工程化抗 CRISPR(Acr)基因的噬菌体(EATPs,eat Pseudomonas)对临床分离的 MDR 铜绿假单胞菌具有有效的抗菌活性和高安全性。EATPs 还显著抑制了高度耐药的 PA14 感染引起的抗生素耐药性,这可能为开发噬菌体治疗难治性细菌感染的患者提供了新的思路,特别是治疗对抗生素治疗无反应的临床 MDR 细菌感染。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/62db/9602763/49e86012294d/spectrum.01602-22-f001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验