Tesler Federico, Lorenzi Roberta Maria, Ponzi Adam, Casellato Claudia, Palesi Fulvia, Gandolfi Daniela, Gandini Wheeler Kingshott Claudia A M, Mapelli Jonathan, D'Angelo Egidio, Migliore Michele, Destexhe Alain
CNRS, Paris-Saclay Institute of Neuroscience (NeuroPSI), Paris-Saclay University, Gif-sur-Yvette, France.
Department of Brain and Behavioural Sciences, University of Pavia, Pavia, Italy.
Front Comput Neurosci. 2024 Aug 6;18:1432593. doi: 10.3389/fncom.2024.1432593. eCollection 2024.
The development of biologically realistic models of brain microcircuits and regions constitutes currently a very relevant topic in computational neuroscience. One of the main challenges of such models is the passage between different scales, going from the microscale (cellular) to the meso (microcircuit) and macroscale (region or whole-brain level), while keeping at the same time a constraint on the demand of computational resources. In this paper we introduce a multiscale modeling framework for the hippocampal CA1, a region of the brain that plays a key role in functions such as learning, memory consolidation and navigation. Our modeling framework goes from the single cell level to the macroscale and makes use of a novel mean-field model of CA1, introduced in this paper, to bridge the gap between the micro and macro scales. We test and validate the model by analyzing the response of the system to the main brain rhythms observed in the hippocampus and comparing our results with the ones of the corresponding spiking network model of CA1. Then, we analyze the implementation of synaptic plasticity within our framework, a key aspect to study the role of hippocampus in learning and memory consolidation, and we demonstrate the capability of our framework to incorporate the variations at synaptic level. Finally, we present an example of the implementation of our model to study a stimulus propagation at the macro-scale level, and we show that the results of our framework can capture the dynamics obtained in the corresponding spiking network model of the whole CA1 area.
构建具有生物学真实性的脑微电路和脑区模型,是当前计算神经科学中一个非常重要的课题。这类模型的主要挑战之一,是在不同尺度之间进行转换,从微观尺度(细胞层面)到中观尺度(微电路层面)再到宏观尺度(脑区或全脑层面),同时还要对计算资源的需求加以限制。在本文中,我们介绍了一种用于海马体CA1区的多尺度建模框架,海马体CA1区在学习、记忆巩固和导航等功能中起着关键作用。我们的建模框架从单细胞层面延伸至宏观尺度,并利用本文中引入的一种全新的CA1区平均场模型,来弥合微观和宏观尺度之间的差距。我们通过分析系统对海马体中观察到的主要脑节律的响应,并将我们的结果与相应的CA1区脉冲神经网络模型的结果进行比较,来测试和验证该模型。然后,我们在我们的框架内分析突触可塑性的实现,这是研究海马体在学习和记忆巩固中作用的一个关键方面,并且我们展示了我们的框架纳入突触层面变化的能力。最后,我们给出一个在宏观尺度层面研究刺激传播的模型实现示例,并表明我们框架的结果能够捕捉在整个CA1区相应脉冲神经网络模型中获得的动力学。