Suppr超能文献

蛋白酶体颗粒的形成受到线粒体呼吸和激酶信号的调节。

Proteasome granule formation is regulated through mitochondrial respiration and kinase signaling.

机构信息

Department of Biochemistry and Molecular Biology, University of Kansas Medical Center, 3901 Rainbow Blvd., HLSIC 1077, Kansas City, KS 66160-7421, USA.

出版信息

J Cell Sci. 2022 Sep 1;135(17). doi: 10.1242/jcs.259778. Epub 2022 Sep 7.

Abstract

In the yeast Saccharomyces cerevisiae, proteasomes are enriched in cell nuclei, in which they execute important cellular functions. Nutrient stress can change this localization, indicating that proteasomes respond to the metabolic state of the cell. However, the signals that connect these processes remain poorly understood. Carbon starvation triggers a reversible translocation of proteasomes to cytosolic condensates known as proteasome storage granules. Surprisingly, we observed strongly reduced levels of proteasome granules when cells had active cellular respiration prior to starvation. This suggests that the mitochondrial activity of cells is a determining factor in the response of proteasomes to carbon starvation. Consistent with this, upon inhibition of mitochondrial function, we observed that proteasomes relocalize to granules. These links between proteasomes and metabolism involve specific signaling pathways, as we identified a mitogen-activated protein kinase (MAPK) cascade that is critical to the formation of proteasome granules after respiratory growth but not following glycolytic growth. Furthermore, the yeast homolog of AMP kinase, Snf1, is important for proteasome granule formation induced by mitochondrial inhibitors, but it is dispensable for granule formation following carbon starvation. We propose a model in which mitochondrial activity promotes nuclear localization of the proteasome. This article has an associated First Person interview with the first author of the paper.

摘要

在酵母酿酒酵母中,蛋白酶体富集在细胞核中,在细胞核中它们执行重要的细胞功能。营养胁迫可以改变这种定位,表明蛋白酶体对细胞的代谢状态有反应。然而,连接这些过程的信号仍然知之甚少。碳饥饿会触发蛋白酶体可逆地转移到细胞质液滴中,这些液滴被称为蛋白酶体储存颗粒。令人惊讶的是,我们观察到在饥饿之前细胞有活跃的细胞呼吸时,蛋白酶体颗粒的水平明显降低。这表明细胞的线粒体活性是蛋白酶体对碳饥饿反应的决定因素。与这一观点一致的是,当抑制线粒体功能时,我们观察到蛋白酶体重新定位于颗粒。蛋白酶体和代谢之间的这些联系涉及特定的信号通路,因为我们鉴定出一种丝裂原激活蛋白激酶(MAPK)级联反应,它对呼吸生长后但不是糖酵解生长后形成蛋白酶体颗粒至关重要。此外,酵母 AMP 激酶的同源物 Snf1 对于线粒体抑制剂诱导的蛋白酶体颗粒形成是重要的,但对于碳饥饿后颗粒形成是可有可无的。我们提出了一个模型,即线粒体活性促进蛋白酶体的核定位。本文有一篇与该论文第一作者的相关第一人称采访。

相似文献

6
Microautophagy regulates proteasome homeostasis.微自噬调节蛋白酶体稳态。
Curr Genet. 2020 Aug;66(4):683-687. doi: 10.1007/s00294-020-01059-x. Epub 2020 Feb 20.
7
Intracellular localization of the proteasome in response to stress conditions.应激条件下蛋白酶体的细胞内定位。
J Biol Chem. 2022 Jul;298(7):102083. doi: 10.1016/j.jbc.2022.102083. Epub 2022 May 27.

本文引用的文献

1
Intracellular localization of the proteasome in response to stress conditions.应激条件下蛋白酶体的细胞内定位。
J Biol Chem. 2022 Jul;298(7):102083. doi: 10.1016/j.jbc.2022.102083. Epub 2022 May 27.
9
Stress- and ubiquitylation-dependent phase separation of the proteasome.蛋白酶体的应激和泛素化依赖性相分离。
Nature. 2020 Feb;578(7794):296-300. doi: 10.1038/s41586-020-1982-9. Epub 2020 Feb 5.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验