Fayed Bahgat
Department of Chemistry of Natural and Microbial Products, Pharmaceutical and Drug Industries Research Institute, National Research Centre, 33 El Bohouth Street, P.O. Box 12622, Dokki, Giza, Egypt.
Drug Deliv Transl Res. 2025 May;15(5):1496-1512. doi: 10.1007/s13346-024-01749-w. Epub 2024 Nov 26.
Candida auris has emerged as a significant global health threat due to its multidrug resistance and ability to form robust biofilms, particularly on medical devices and hospital surfaces. Biofilms protect C. auris from antifungal treatments and the host immune response, making infections persistent and difficult to control. This review explores the potential of nanoparticles to overcome the limitations of traditional antifungal therapies in combating C. auris biofilms. Nanoparticles, with their unique physicochemical properties, offer promising strategies to penetrate biofilm matrices, deliver antifungal agents, and disrupt biofilm structure. Various types of nanoparticles, including metallic, polymeric, lipid-based, and cyclodextrin-based, demonstrate enhanced biofilm penetration and antifungal activity. Their ability to generate reactive oxygen species, disrupt cell adhesion, and release antifungals in a controlled manner makes them ideal candidates for biofilm-targeted therapies. This review presents the current advancements in nanoparticle-based solutions, emphasizing the need for further research into their mechanisms of action, safety, and clinical application. By addressing the challenge of C. auris biofilms specifically, this review provides a critical synthesis of existing knowledge and identifies future directions for developing effective antifungal therapies using nanotechnology.
耳念珠菌因其多重耐药性以及形成坚固生物膜的能力,尤其是在医疗设备和医院表面形成生物膜的能力,已成为全球重大的健康威胁。生物膜可保护耳念珠菌免受抗真菌治疗以及宿主免疫反应的影响,导致感染持续存在且难以控制。本综述探讨了纳米颗粒在克服传统抗真菌疗法治疗耳念珠菌生物膜方面局限性的潜力。纳米颗粒具有独特的物理化学性质,为穿透生物膜基质、递送抗真菌剂以及破坏生物膜结构提供了有前景的策略。包括金属、聚合物、脂质基和环糊精基在内的各类纳米颗粒均表现出增强的生物膜穿透能力和抗真菌活性。它们产生活性氧、破坏细胞黏附以及以可控方式释放抗真菌剂的能力使其成为生物膜靶向治疗的理想候选物。本综述介绍了基于纳米颗粒解决方案的当前进展,强调了对其作用机制、安全性和临床应用进行进一步研究的必要性。通过专门应对耳念珠菌生物膜的挑战,本综述对现有知识进行了批判性总结,并确定了利用纳米技术开发有效抗真菌疗法的未来方向。