Komaba Institute for Science, The University of Tokyo, Meguro, Tokyo, Japan.
Department of Bioengineering, Stanford University, Stanford, CA, USA.
Cell. 2023 Sep 28;186(20):4325-4344.e26. doi: 10.1016/j.cell.2023.08.009. Epub 2023 Aug 30.
KCR channelrhodopsins (K-selective light-gated ion channels) have received attention as potential inhibitory optogenetic tools but more broadly pose a fundamental mystery regarding how their K selectivity is achieved. Here, we present 2.5-2.7 Å cryo-electron microscopy structures of HcKCR1 and HcKCR2 and of a structure-guided mutant with enhanced K selectivity. Structural, electrophysiological, computational, spectroscopic, and biochemical analyses reveal a distinctive mechanism for K selectivity; rather than forming the symmetrical filter of canonical K channels achieving both selectivity and dehydration, instead, three extracellular-vestibule residues within each monomer form a flexible asymmetric selectivity gate, while a distinct dehydration pathway extends intracellularly. Structural comparisons reveal a retinal-binding pocket that induces retinal rotation (accounting for HcKCR1/HcKCR2 spectral differences), and design of corresponding KCR variants with increased K selectivity (KALI-1/KALI-2) provides key advantages for optogenetic inhibition in vitro and in vivo. Thus, discovery of a mechanism for ion-channel K selectivity also provides a framework for next-generation optogenetics.
KCR 通道视紫红质(K 型光门控离子通道)作为潜在的抑制性光遗传学工具受到了关注,但更广泛地说,它们在如何实现 K 选择性方面构成了一个基本的谜团。在这里,我们展示了 HcKCR1 和 HcKCR2 的 2.5-2.7Å 冷冻电镜结构,以及一种结构指导的突变体,其 K 选择性增强。结构、电生理、计算、光谱和生化分析揭示了 K 选择性的独特机制;它不是形成经典 K 通道的对称滤波器来实现选择性和脱水,而是每个单体中的三个细胞外前庭残基形成一个灵活的不对称选择性门,而一个独特的脱水途径则延伸到细胞内。结构比较揭示了一个诱导视黄醛旋转的视黄醛结合口袋(解释了 HcKCR1/HcKCR2 的光谱差异),并且设计具有更高 K 选择性的相应 KCR 变体(KALI-1/KALI-2)为离体和体内的光遗传学抑制提供了关键优势。因此,离子通道 K 选择性机制的发现也为下一代光遗传学提供了一个框架。