Suppr超能文献

利用静息态脑功能放射组学特征的机器学习预测青年社交焦虑

Predicting social anxiety in young adults with machine learning of resting-state brain functional radiomic features.

机构信息

Department of Psychiatry, Yonsei University College of Medicine, Seoul, Republic of Korea.

Institute of Behavioral Sciences in Medicine, Yonsei University College of Medicine, Seoul, Republic of Korea.

出版信息

Sci Rep. 2022 Aug 17;12(1):13932. doi: 10.1038/s41598-022-17769-w.

Abstract

Social anxiety is a symptom widely prevalent among young adults, and when present in excess, can lead to maladaptive patterns of social behavior. Recent approaches that incorporate brain functional radiomic features and machine learning have shown potential for predicting certain phenotypes or disorders from functional magnetic resonance images. In this study, we aimed to predict the level of social anxiety in young adult participants by training machine learning models with resting-state brain functional radiomic features including the regional homogeneity, fractional amplitude of low-frequency fluctuation, fractional resting-state physiological fluctuation amplitude, and degree centrality. Among the machine learning models, the XGBoost model achieved the best performance with balanced accuracy of 77.7% and F1 score of 0.815. Analysis of input feature importance demonstrated that the orbitofrontal cortex and the degree centrality were most relevant to predicting the level of social anxiety among the input brain regions and the input type of radiomic features, respectively. These results suggest potential validity for predicting social anxiety with machine learning of the resting-state brain functional radiomic features and provide further understanding of the neural basis of the symptom.

摘要

社交焦虑是年轻人中广泛存在的一种症状,当过度出现时,可能会导致适应不良的社交行为模式。最近的一些方法结合了脑功能放射组学特征和机器学习,已经显示出从功能磁共振图像预测某些表型或疾病的潜力。在这项研究中,我们旨在通过使用静息态脑功能放射组学特征(包括局部一致性、低频波动分数幅度、静息态生理波动幅度分数和度中心性)训练机器学习模型,来预测年轻参与者的社交焦虑程度。在机器学习模型中,XGBoost 模型的表现最佳,平衡准确率为 77.7%,F1 得分为 0.815。输入特征重要性分析表明,眶额皮质和度中心性分别是输入脑区和放射组学特征输入类型中与预测社交焦虑程度最相关的特征。这些结果表明,使用静息态脑功能放射组学特征的机器学习预测社交焦虑具有潜在的有效性,并为该症状的神经基础提供了进一步的理解。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f8fe/9385624/fcfbcfcf5fd4/41598_2022_17769_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验