Merchant Suleman Adam, Shaikh Mohd Javed Saifullah, Nadkarni Prakash
Lokmanya Tilak Municipal Medical College and General Hospital, Mumbai 400022, Maharashtra, India.
Department of Radiology, North Bengal Neuro Centre, Jupiter magnetic resonance imaging, Diagnostic Centre, Siliguri 734003, West Bengal, India.
World J Radiol. 2022 Jun 28;14(6):114-136. doi: 10.4329/wjr.v14.i6.114.
Tuberculosis (TB) remains a global threat, with the rise of multiple and extensively drug resistant TB posing additional challenges. The International health community has set various 5-yearly targets for TB elimination: mathematical modelling suggests that a 2050 target is feasible with a strategy combining better diagnostics, drugs, and vaccines to detect and treat both latent and active infection. The availability of rapid and highly sensitive diagnostic tools (Gene-Xpert, TB-Quick) will vastly facilitate population-level identification of TB (including rifampicin resistance and through it, multi-drug-resistant TB). Basic-research advances have illuminated molecular mechanisms in TB, including the protective role of Vitamin D. Also, Mycobacterium tuberculosis impairs the host immune response through epigenetic mechanisms (histone-binding modulation). Imaging will continue to be key, both for initial diagnosis and follow-up. We discuss advances in multiple imaging modalities to evaluate TB tissue changes, such as molecular imaging techniques (including pathogen-specific positron emission tomography imaging agents), non-invasive temporal monitoring, and computing enhancements to improve data acquisition and reduce scan times. Big data analysis and Artificial Intelligence (AI) algorithms, notably in the AI sub-field called "Deep Learning", can potentially increase the speed and accuracy of diagnosis. Additionally, Federated learning makes multi-institutional/multi-city AI-based collaborations possible without sharing identifiable patient data. More powerful hardware designs - , Edge and Quantum Computing- will facilitate the role of computing applications in TB. However, "Artificial Intelligence needs real Intelligence to guide it!" To have maximal impact, AI must use a holistic approach that incorporates time tested human wisdom gained over decades from the full gamut of TB, , key imaging and clinical parameters, including prognostic indicators, plus bacterial and epidemiologic data. We propose a similar holistic approach at the level of national/international policy formulation and implementation, to enable effective culmination of TB's endgame, summarizing it with the acronym "TB - REVISITED".
结核病仍然是一个全球性威胁,多重耐药和广泛耐药结核病的增加带来了额外挑战。国际卫生界为消除结核病设定了多个五年目标:数学模型表明,通过结合更好的诊断方法、药物和疫苗来检测和治疗潜伏性和活动性感染的策略,2050年的目标是可行的。快速且高度灵敏的诊断工具(Gene-Xpert、TB-Quick)的出现将极大地促进在人群层面识别结核病(包括利福平耐药性以及由此导致的多重耐药结核病)。基础研究的进展揭示了结核病的分子机制,包括维生素D的保护作用。此外,结核分枝杆菌通过表观遗传机制(组蛋白结合调节)损害宿主免疫反应。成像对于初始诊断和随访都将继续发挥关键作用。我们讨论了多种成像方式在评估结核组织变化方面的进展,例如分子成像技术(包括病原体特异性正电子发射断层扫描成像剂)、非侵入性时间监测以及计算增强技术,以改善数据采集并减少扫描时间。大数据分析和人工智能(AI)算法,特别是在被称为“深度学习”的AI子领域,有可能提高诊断的速度和准确性。此外,联邦学习使得基于AI的多机构/多城市合作成为可能,而无需共享可识别的患者数据。更强大的硬件设计——边缘计算和量子计算——将促进计算应用在结核病中的作用。然而,“人工智能需要真正的智慧来引导它!”为了产生最大影响,人工智能必须采用一种整体方法,该方法纳入了数十年来从结核病的各个方面、关键成像和临床参数(包括预后指标)以及细菌和流行病学数据中获得的经过时间考验的人类智慧。我们在国家/国际政策制定和实施层面提出了类似的整体方法,以实现结核病终局的有效达成,并用首字母缩写词“TB - REVISITED”对其进行总结。