Suppr超能文献

具有多个罐形铜丝的超线性阈值开关选择器,位于交叉点突触忆阻器阵列的非晶态锗硒电阻开关层中。

Super-Linear-Threshold-Switching Selector with Multiple Jar-Shaped Cu-Filaments in the Amorphous Ge Se Resistive Switching Layer in a Cross-Point Synaptic Memristor Array.

作者信息

Kim Hea-Jee, Woo Dae-Seong, Jin Soo-Min, Kwon Hyo-Jun, Kwon Ki-Hyun, Kim Dong-Won, Park Dong-Hyun, Kim Dong-Eon, Jin Hong-Uk, Choi Hyun-Do, Shim Tae-Hun, Park Jea-Gun

机构信息

Department of Nano-Scale Semiconductor Engineering, Hanyang University, Seoul, 04763, Republic of Korea.

Department of Electronic Engineering, Hanyang University, Seoul, 04763, Republic of Korea.

出版信息

Adv Mater. 2022 Oct;34(40):e2203643. doi: 10.1002/adma.202203643. Epub 2022 Aug 29.

Abstract

The learning and inference efficiencies of an artificial neural network represented by a cross-point synaptic memristor array can be achieved using a selector, with high selectivity (I /I ) and sufficient death region, stacked vertically on a synaptic memristor. This can prevent a sneak current in the memristor array. A selector with multiple jar-shaped conductive Cu filaments in the resistive switching layer is precisely fabricated by designing the Cu ion concentration depth profile of the CuGeSe layer as a filament source, TiN diffusion barrier layer, and Ge Se switching layer. The selector performs super-linear-threshold-switching with a selectivity of > 10 , death region of -0.70-0.65 V, holding time of 300 ns, switching speed of 25 ns, and endurance cycle of > 10 . In addition, the mechanism of switching is proven by the formation of conductive Cu filaments between the CuGeSe and Ge Se layers under a positive bias on the top Pt electrode and an automatic rupture of the filaments after the holding time. Particularly, a spiking deep neural network using the designed one-selector-one-memory cross-point array improves the Modified National Institute of Standards and Technology classification accuracy by ≈3.8% by eliminating the sneak current in the cross-point array during the inference process.

摘要

通过在突触忆阻器上垂直堆叠具有高选择性(I /I )和足够死区的选择器,可以实现由交叉点突触忆阻器阵列表示的人工神经网络的学习和推理效率。这可以防止忆阻器阵列中的潜行电流。通过将CuGeSe层的Cu离子浓度深度分布设计为细丝源、TiN扩散阻挡层和Ge Se开关层,精确制造了在电阻开关层中具有多个罐形导电Cu细丝的选择器。该选择器执行超线性阈值开关,选择性> 10 ,死区为-0.70 - 0.65 V,保持时间为300 ns,开关速度为25 ns,耐久性循环> 10 。此外,通过在顶部Pt电极上的正偏压下在CuGeSe和Ge Se层之间形成导电Cu细丝以及在保持时间后细丝的自动断裂,证明了开关机制。特别是,使用设计的单选择器单存储器交叉点阵列的脉冲深度神经网络通过在推理过程中消除交叉点阵列中的潜行电流,将修改后的国家标准与技术研究所的分类准确率提高了约3.8%。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验