Suppr超能文献

基于铜银合金的热稳定阈值选择器,用于节能型存储和神经形态计算应用。

Thermally stable threshold selector based on CuAg alloy for energy-efficient memory and neuromorphic computing applications.

机构信息

The Interdisciplinary Research Center, Shanghai Advanced Research Institute, Chinese Academy of Sciences, 99 Haike Road, Zhangjiang Hi-Tech Park, 201210, Pudong, Shanghai, China.

College of Information Science and Electronic Engineering, Zhejiang University, 38 Zheda Road, 310007, Hangzhou, China.

出版信息

Nat Commun. 2023 Jun 6;14(1):3285. doi: 10.1038/s41467-023-39033-z.

Abstract

As a promising candidate for high-density data storage and neuromorphic computing, cross-point memory arrays provide a platform to overcome the von Neumann bottleneck and accelerate neural network computation. In order to suppress the sneak-path current problem that limits their scalability and read accuracy, a two-terminal selector can be integrated at each cross-point to form the one-selector-one-memristor (1S1R) stack. In this work, we demonstrate a CuAg alloy-based, thermally stable and electroforming-free selector device with tunable threshold voltage and over 7 orders of magnitude ON/OFF ratio. A vertically stacked 64 × 64 1S1R cross-point array is further implemented by integrating the selector with SiO-based memristors. The 1S1R devices exhibit extremely low leakage currents and proper switching characteristics, which are suitable for both storage class memory and synaptic weight storage. Finally, a selector-based leaky integrate-and-fire neuron is designed and experimentally implemented, which expands the application prospect of CuAg alloy selectors from synapses to neurons.

摘要

作为高密度数据存储和神经形态计算的有前途的候选者,交叉点存储阵列提供了一个克服冯·诺依曼瓶颈并加速神经网络计算的平台。为了抑制限制其可扩展性和读取精度的 sneak-path 电流问题,可以在每个交叉点处集成一个二端选择器,以形成一个选择器一个忆阻器(1S1R)堆叠。在这项工作中,我们展示了一种基于 CuAg 合金的、热稳定且无需电形成的选择器器件,具有可调阈值电压和超过 7 个数量级的 ON/OFF 比。通过将选择器与基于 SiO2 的忆阻器集成,进一步实现了垂直堆叠的 64×64 1S1R 交叉点阵列。1S1R 器件具有极低的泄漏电流和适当的开关特性,适用于存储类内存和突触权重存储。最后,设计并实验实现了基于选择器的漏积分放电神经元,这将 CuAg 合金选择器的应用前景从突触扩展到神经元。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ff1b/10244361/043e52a4fb47/41467_2023_39033_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验