Yoon Kyung Jean, Han Jin-Woo, Moon Dong-Il, Seol Myeong Lok, Meyyappan M, Kim Han Joon, Hwang Cheol Seong
Center for Nanotechnology, NASA Ames Research Center Moffett Field CA 94035 USA
Department of Materials Science and Engineering, Inter-University Semiconductor Research Center, Seoul National University Gwanak-ro 1, Daehag-dong, Gwanak-gu Seoul 151-744 Republic of Korea
Nanoscale Adv. 2019 Jun 17;1(8):2990-2998. doi: 10.1039/c9na00329k. eCollection 2019 Aug 6.
A method to electrically induce memristor performance from inkjet-printed silver (Ag) nanoparticles is presented, which is effective on a specifically designed hourglass-shaped Ag metal device. Joule heating-induced oxidation in the bottleneck region, when applying a high current to the device, results in a metal-electrolyte-metal structure produced from just a single metal ink for the memristor operation. This electrically induced memristor shows a nonuniform dispersion of the Ag nanoparticles within the oxide electrolyte layer, depending on the bias polarity adopted during the initial metal rupture process. A versatile and useful range of controllable memristor behaviors, from volatile threshold switching to nonvolatile unipolar as well as bipolar resistive switching, are observed based on the reversible rejuvenation and rupture of the Ag nanofilaments according to the Ag cation migration within the oxide electrolyte. The interplay between the electric field induced redox reaction and thermal diffusion of the Ag nanoparticles constitutes the primary reason for the different switching behaviors, further supported by thermo-field simulation results. The bipolar switching memristor demonstrates reliable endurance even under harsh DC switching conditions with low power consumption compared with its unipolar switching operation. The observed range of controllable switching behavior can be exploited for future low power flexible memory, as a selector in crossbar memory architecture, synaptic learning, and others.
本文提出了一种通过喷墨打印银(Ag)纳米颗粒电诱导忆阻器性能的方法,该方法对专门设计的沙漏形Ag金属器件有效。当对器件施加高电流时,瓶颈区域的焦耳热诱导氧化会产生一种仅由单一金属墨水制成的用于忆阻器操作的金属 - 电解质 - 金属结构。这种电诱导忆阻器在氧化物电解质层内显示出Ag纳米颗粒的不均匀分散,这取决于初始金属破裂过程中采用的偏置极性。基于Ag阳离子在氧化物电解质内的迁移导致Ag纳米丝的可逆恢复活力和破裂,观察到了从挥发性阈值切换到非易失性单极以及双极电阻切换等一系列通用且有用的可控忆阻器行为。电场诱导的氧化还原反应与Ag纳米颗粒的热扩散之间的相互作用构成了不同切换行为的主要原因,热场模拟结果进一步证实了这一点。与单极切换操作相比,双极切换忆阻器即使在苛刻的直流切换条件下也能表现出可靠的耐久性且功耗较低。所观察到的可控切换行为范围可用于未来的低功耗柔性存储器、交叉开关存储器架构中的选择器、突触学习等领域。