Suppr超能文献

使用机器学习对帕金森病进行分类及其分期。

Classification of Parkinson's disease and its stages using machine learning.

机构信息

Department of Computing and Information Sciences, Florida International University, Miami, FL, 33199, USA.

Department of Communicative Sciences and Disorders, Saint Mary's College, Notre Dame, IN, 46556, USA.

出版信息

Sci Rep. 2022 Aug 18;12(1):14036. doi: 10.1038/s41598-022-18015-z.

Abstract

As digital health technology becomes more pervasive, machine learning (ML) provides a robust way to analyze and interpret the myriad of collected features. The purpose of this preliminary work was to use ML classification to assess the benefits and relevance of neurocognitive features both tablet-based assessments and self-reported metrics, as they relate to Parkinson's Disease (PD) and its stages [Hoehn and Yahr (H&Y) Stages 1-5]. Further, this work aims to compare perceived versus sensor-based neurocognitive abilities. In this study, 75 participants ([Formula: see text] PD; [Formula: see text] control) completed 14 tablet-based neurocognitive functional tests (e.g., motor, memory, speech, executive, and multifunction), functional movement assessments (e.g., Berg Balance Scale), and standardized health questionnaires (e.g., PDQ-39). Decision tree classification of sensor-based features allowed for the discrimination of PD from healthy controls with an accuracy of [Formula: see text], and early and advanced stages of PD with an accuracy of [Formula: see text]; compared to the current gold standard tools [e.g., standardized health questionnaires ([Formula: see text] accuracy) and functional movement assessments ([Formula: see text] accuracy)]. Significant features were also identified using decision tree classification. Device magnitude of acceleration was significant in 12 of 14 tests ([Formula: see text]), regardless of test type. For classification between diagnosed and control populations, 17 motor (e.g., device magnitude of acceleration), 9 accuracy (e.g., number of correct/incorrect interactions), and 8 timing features (e.g., time to between interactions) were significant. For classification between early (H&Y Stages 1 and 2) and advanced (H&Y Stages 3, 4, and 5) stages of PD, 7 motor, 12 accuracy, and 14 timing features were significant. Finally, this work depicts that perceived functionality of individuals with PD differed from sensor-based functionalities. In early-stage PD was shown to be [Formula: see text] lower than sensor-based scores with notable perceived deficits in memory and executive function. However, individuals in advanced stages had elevated perceptions (1.57x) for executive and behavioral functions compared to early-stage populations. Machine learning in digital health systems allows for a more comprehensive understanding of neurodegenerative diseases and their stages and may also depict new features that influence the ways digital health technology should be configured.

摘要

随着数字健康技术的普及,机器学习 (ML) 为分析和解释收集到的大量特征提供了一种强大的方法。这项初步工作的目的是使用 ML 分类来评估基于平板电脑的评估和自我报告指标的神经认知特征的益处和相关性,因为它们与帕金森病 (PD) 及其阶段[Hoehn 和 Yahr (H&Y) 阶段 1-5]有关。此外,这项工作旨在比较感知和基于传感器的神经认知能力。在这项研究中,75 名参与者([公式:见文本] PD;[公式:见文本] 对照组)完成了 14 项基于平板电脑的神经认知功能测试(例如,运动、记忆、言语、执行和多功能)、功能性运动评估(例如,伯格平衡量表)和标准化健康问卷(例如,PDQ-39)。基于传感器特征的决策树分类允许将 PD 与健康对照组区分开来,准确率为[公式:见文本],将早期和晚期 PD 阶段区分开来,准确率为[公式:见文本];与当前的黄金标准工具相比[例如,标准化健康问卷([公式:见文本]准确率)和功能性运动评估([公式:见文本]准确率)]。使用决策树分类还确定了重要特征。无论测试类型如何,在 14 项测试中的 12 项中,设备加速度的幅度都具有显著性([公式:见文本])。对于诊断和对照组人群之间的分类,17 项运动(例如,设备加速度幅度)、9 项准确性(例如,正确/错误交互的数量)和 8 项时间特征(例如,交互之间的时间)具有显著性。对于早期(H&Y 阶段 1 和 2)和晚期(H&Y 阶段 3、4 和 5)PD 阶段之间的分类,7 项运动、12 项准确性和 14 项时间特征具有显著性。最后,这项工作表明,PD 患者的感知功能与基于传感器的功能不同。在早期 PD 中,与基于传感器的分数相比,感知分数低[公式:见文本],记忆和执行功能明显存在缺陷。然而,与早期人群相比,处于晚期阶段的个体对执行和行为功能的感知较高(1.57x)。数字健康系统中的机器学习可以更全面地了解神经退行性疾病及其阶段,还可以描述影响数字健康技术配置方式的新特征。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/92d3/9388671/5c76cc39356d/41598_2022_18015_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验