Suppr超能文献

新型特征选择方法可构建精确的表观遗传钟。

Novel feature selection methods for construction of accurate epigenetic clocks.

机构信息

Blavatnik Institute, Dept. of Genetics, Paul F. Glenn Center for Biology of Aging Research at Harvard Medical School, Boston, Massachusetts, United States of America.

出版信息

PLoS Comput Biol. 2022 Aug 19;18(8):e1009938. doi: 10.1371/journal.pcbi.1009938. eCollection 2022 Aug.

Abstract

Epigenetic clocks allow us to accurately predict the age and future health of individuals based on the methylation status of specific CpG sites in the genome and are a powerful tool to measure the effectiveness of longevity interventions. There is a growing need for methods to efficiently construct epigenetic clocks. The most common approach is to create clocks using elastic net regression modelling of all measured CpG sites, without first identifying specific features or CpGs of interest. The addition of feature selection approaches provides the opportunity to optimise the identification of predictive CpG sites. Here, we apply novel feature selection methods and combinatorial approaches including newly adapted neural networks, genetic algorithms, and 'chained' combinations. Human whole blood methylation data of ~470,000 CpGs was used to develop clocks that predict age with R2 correlation scores of greater than 0.73, the most predictive of which uses 35 CpG sites for a R2 correlation score of 0.87. The five most frequent sites across all clocks were modelled to build a clock with a R2 correlation score of 0.83. These two clocks are validated on two external datasets where they maintain excellent predictive accuracy. When compared with three published epigenetic clocks (Hannum, Horvath, Weidner) also applied to these validation datasets, our clocks outperformed all three models. We identified gene regulatory regions associated with selected CpGs as possible targets for future aging studies. Thus, our feature selection algorithms build accurate, generalizable clocks with a low number of CpG sites, providing important tools for the field.

摘要

表观遗传时钟可基于基因组中特定 CpG 位点的甲基化状态,准确预测个体的年龄和未来健康状况,是衡量长寿干预措施效果的有力工具。因此,人们越来越需要有效的方法来构建表观遗传时钟。最常见的方法是使用弹性网络回归模型对所有测量的 CpG 位点进行建模,而无需首先确定特定的特征或感兴趣的 CpG 位点。特征选择方法的加入为优化预测性 CpG 位点的识别提供了机会。在这里,我们应用了新的特征选择方法和组合方法,包括新适应的神经网络、遗传算法和“链式”组合。我们使用约 470,000 个 CpG 的人类全血甲基化数据来开发时钟,这些时钟的 R2 相关评分大于 0.73,最具预测性的时钟使用 35 个 CpG 位点的 R2 相关评分为 0.87。对所有时钟中最常见的五个位点进行建模,以构建 R2 相关评分 0.83 的时钟。这两个时钟在两个外部数据集上进行了验证,在这些数据集上它们保持了出色的预测准确性。与也应用于这些验证数据集的三个已发表的表观遗传时钟(Hannum、Horvath、Weidner)相比,我们的时钟优于所有三个模型。我们确定了与选定 CpG 相关的基因调控区域,作为未来衰老研究的可能靶点。因此,我们的特征选择算法构建了具有少量 CpG 位点的准确、可推广的时钟,为该领域提供了重要的工具。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0bcc/9432708/0433fbf99f5f/pcbi.1009938.g001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验