Suppr超能文献

鞣花酸作为一种别构 NSP13 解旋酶抑制剂,能够在体外有效抑制 SARS-CoV-2 的复制。

Punicalagin as an allosteric NSP13 helicase inhibitor potently suppresses SARS-CoV-2 replication in vitro.

机构信息

College of Chemistry, Fuzhou University, Fuzhou, 350108, China.

Shenzhen Key Laboratory of Pathogen and Immunity, National Clinical Research Center for Infectious Disease, State Key Discipline of Infectious Disease, Shenzhen Third People's Hospital, Second Hospital Affiliated to Southern University of Science and Technology, Shenzhen, China.

出版信息

Antiviral Res. 2022 Oct;206:105389. doi: 10.1016/j.antiviral.2022.105389. Epub 2022 Aug 17.

Abstract

The severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) helicase NSP13 plays a conserved role in the replication of coronaviruses and has been identified as an ideal target for the development of antiviral drugs against SARS-CoV-2. Here, we identify a novel NSP13 helicase inhibitor punicalagin (PUG) through high-throughput screening. Surface plasmon resonance (SPR)-based analysis and molecular docking calculation reveal that PUG directly binds NSP13 on the interface of domains 1A and 2A, with a K value of 21.6 nM. Further biochemical and structural analyses suggest that PUG inhibits NSP13 on ATP hydrolysis and prevents it binding to DNA substrates. Finally, the antiviral studies show that PUG effectively suppresses the SARS-CoV-2 replication in A549-ACE2 and Vero cells, with EC values of 347 nM and 196 nM, respectively. Our work demonstrates the potential application of PUG in the treatment of coronavirus disease 2019 (COVID-19) and identifies an allosteric inhibition mechanism for future drug design targeting the viral helicases.

摘要

严重急性呼吸综合征冠状病毒 2(SARS-CoV-2)解旋酶 NSP13 在冠状病毒的复制中发挥保守作用,已被确定为开发针对 SARS-CoV-2 的抗病毒药物的理想靶点。在这里,我们通过高通量筛选鉴定出一种新型 NSP13 解旋酶抑制剂鞣花酸(PUG)。基于表面等离子体共振(SPR)的分析和分子对接计算表明,PUG 直接结合 NSP13 在结构域 1A 和 2A 的界面上,K 值为 21.6 nM。进一步的生化和结构分析表明,PUG 抑制 NSP13 的 ATP 水解,并阻止其与 DNA 底物结合。最后,抗病毒研究表明 PUG 能有效抑制 A549-ACE2 和 Vero 细胞中 SARS-CoV-2 的复制,EC 值分别为 347 nM 和 196 nM。我们的工作证明了 PUG 在治疗 2019 年冠状病毒病(COVID-19)中的应用潜力,并确定了针对病毒解旋酶的未来药物设计的变构抑制机制。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验