Département de Pathologie et Microbiologie, Faculté de Médecine Vétérinaire, Université de Montréal, Saint-Hyacinthe, QC, Canada.
The Research Group on Infectious Diseases in Production Animals (GREMIP), Faculté de Médecine Vétérinaire, Université de Montréal, Saint-Hyacinthe, QC, Canada.
Front Cell Infect Microbiol. 2022 Aug 3;12:954144. doi: 10.3389/fcimb.2022.954144. eCollection 2022.
Visceral leishmaniasis (VL), caused by , is an oft-fatal neglected tropical disease. In the absence of an effective vaccine, the control of leishmaniasis relies exclusively on chemotherapy. Due to the lack of established molecular/genetic markers denoting parasite resistance, clinical treatment failure is often used as an indicator. Antimony-based drugs have been the standard antileishmanial treatment for more than seven decades, leading to major drug resistance in certain regions. Likewise, drug resistance to miltefosine and amphotericin B continues to spread at alarming rates. In consequence, innovative approaches are needed to accelerate the identification of antimicrobial drug targets and resistance mechanisms. To this end, we have implemented a novel approach based on thermal proteome profiling (TPP) to further characterize the mode of action of antileishmanials antimony, miltefosine and amphotericin B, as well as to better understand the mechanisms of drug resistance deployed by . Proteins become more resistant to heat-induced denaturation when complexed with a ligand. In this way, we used multiplexed quantitative mass spectrometry-based proteomics to monitor the melting profile of thousands of expressed soluble proteins in WT, antimony-resistant, miltefosine-resistant, and amphotericin B-resistant parasites, in the presence (or absence) of the above-mentioned drugs. Bioinformatics analyses were performed, including data normalization, melting profile fitting, and identification of proteins that underwent changes (fold change > 4) caused by complexation with a drug. With this unique approach, we were able to narrow down the regions of the proteome that interact with antimony, miltefosine, and amphotericin B; validating previously-identified and unveiling novel drug targets. Moreover, analyses revealed candidate proteins potentially involved in drug resistance. Interestingly, we detected thermal proximity coaggregation for several proteins belonging to the same metabolic pathway (i.e., tryparedoxin peroxidase and aspartate aminotransferase in proteins exposed to antimony), highlighting the importance of these pathways. Collectively, our results could serve as a jumping-off point for the future development of innovative diagnostic tools for the detection and evaluation of antimicrobial-resistant populations, as well as open the door for new on-target therapies.
内脏利什曼病(VL)由引起,是一种经常致命的被忽视的热带病。在没有有效疫苗的情况下,利什曼病的控制完全依赖于化疗。由于缺乏表示寄生虫耐药性的既定分子/遗传标记,临床治疗失败通常被用作指标。基于锑的药物作为标准抗利什曼原虫治疗方法已经使用了七十多年,导致某些地区出现了严重的耐药性。同样,米替福新和两性霉素 B 的耐药性也在以惊人的速度传播。因此,需要创新方法来加速识别抗菌药物靶点和耐药机制。为此,我们采用了一种新的基于热蛋白质组谱(TPP)的方法,以进一步表征抗利什曼原虫药物锑、米替福新和两性霉素 B 的作用模式,并更好地理解寄生虫部署的耐药机制。当蛋白质与配体结合时,它们对热诱导的变性更具抗性。通过这种方式,我们使用基于多重定量质谱的蛋白质组学来监测 WT、锑耐药、米替福新耐药和两性霉素 B 耐药寄生虫中数千种表达可溶性蛋白质的融解曲线,同时存在(或不存在)上述药物。进行了生物信息学分析,包括数据归一化、融解曲线拟合以及鉴定由于与药物结合而发生变化(变化倍数 > 4)的蛋白质。通过这种独特的方法,我们能够缩小与锑、米替福新和两性霉素 B 相互作用的区域;验证了先前确定的和揭示了新的药物靶点。此外,分析揭示了可能与耐药性相关的候选蛋白。有趣的是,我们检测到属于同一代谢途径的几种蛋白质的热接近共聚集(即暴露于锑的蛋白质中的硫氧还蛋白过氧化物酶和天冬氨酸氨基转移酶),强调了这些途径的重要性。总的来说,我们的结果可以作为未来开发用于检测和评估抗微生物耐药的创新诊断工具的起点,也为新的靶向治疗打开了大门。