Suppr超能文献

在人格研究中使用变分自编码器探索因素结构。

Exploring Factor Structures Using Variational Autoencoder in Personality Research.

作者信息

Huang Yufei, Zhang Jianqiu

机构信息

Department of Medicine, University of Pittsburgh School of Medicine, Pittsburgh, PA, United States.

University of Pittsburgh Medical Center Hillman Cancer Center, Pittsburgh, PA, United States.

出版信息

Front Psychol. 2022 Aug 5;13:863926. doi: 10.3389/fpsyg.2022.863926. eCollection 2022.

Abstract

An accurate personality model is crucial to many research fields. Most personality models have been constructed using linear factor analysis (LFA). In this paper, we investigate if an effective deep learning tool for factor extraction, the Variational Autoencoder (VAE), can be applied to explore the factor structure of a set of personality variables. To compare VAE with LFA, we applied VAE to an International Personality Item Pool (IPIP) Big 5 dataset and an IPIP HEXACO (Humility-Honesty, Emotionality, Extroversion, Agreeableness, Conscientiousness, Openness) dataset. We found that LFA tends to break factors into ever smaller, yet still significant fractions, when the number of assumed latent factors increases, leading to the need to organize personality variables at the factor level and then the facet level. On the other hand, the factor structure returned by VAE is very stable and VAE only adds noise-like factors after significant factors are found as the number of assumed latent factors increases. VAE reported more stable factors by elevating some facets in the HEXACO scale to the factor level. Since this is a data-driven process that exhausts all stable and significant factors that can be found, it is not necessary to further conduct facet level analysis and it is anticipated that VAE will have broad applications in exploratory factor analysis in personality research.

摘要

一个准确的人格模型对许多研究领域至关重要。大多数人格模型是使用线性因子分析(LFA)构建的。在本文中,我们研究一种用于因子提取的有效深度学习工具——变分自编码器(VAE),是否可用于探索一组人格变量的因子结构。为了将VAE与LFA进行比较,我们将VAE应用于一个国际人格项目池(IPIP)大五数据集和一个IPIP HEXACO(谦逊 - 诚实、情绪性、外向性、宜人性、尽责性、开放性)数据集。我们发现,当假设的潜在因子数量增加时,LFA倾向于将因子分解为越来越小但仍然显著的部分,这就需要在因子层面然后在层面层面上对人格变量进行组织。另一方面,VAE返回的因子结构非常稳定,并且随着假设的潜在因子数量增加,VAE在找到显著因子后只会添加类似噪声的因子。VAE通过将HEXACO量表中的一些层面提升到因子层面,报告了更稳定的因子。由于这是一个数据驱动的过程,它会穷尽所有可以找到的稳定且显著的因子,因此没有必要进一步进行层面层面的分析,并且预计VAE将在人格研究的探索性因子分析中有广泛的应用。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8075/9388855/3631db3371e8/fpsyg-13-863926-g0001.jpg

相似文献

1
Exploring Factor Structures Using Variational Autoencoder in Personality Research.
Front Psychol. 2022 Aug 5;13:863926. doi: 10.3389/fpsyg.2022.863926. eCollection 2022.
2
The HEXACO Personality Space Before and After Re-Rotation to Approximate the Big Five Dimensions.
J Pers Assess. 2024 Mar-Apr;106(2):145-155. doi: 10.1080/00223891.2023.2229427. Epub 2023 Jul 7.
3
Associations Between Openness Facets, Prejudice, and Tolerance: A Scoping Review With Meta-Analysis.
Front Psychol. 2021 Sep 28;12:707652. doi: 10.3389/fpsyg.2021.707652. eCollection 2021.
4
Psychometric Properties of the HEXACO Personality Inventory.
Multivariate Behav Res. 2004 Apr 1;39(2):329-58. doi: 10.1207/s15327906mbr3902_8.
5
The HEXACO Honesty-Humility, Agreeableness, and Emotionality factors: a review of research and theory.
Pers Soc Psychol Rev. 2014 May;18(2):139-52. doi: 10.1177/1088868314523838. Epub 2014 Feb 26.
6
The Nomological Net of the HEXACO Model of Personality: A Large-Scale Meta-Analytic Investigation.
Perspect Psychol Sci. 2020 May;15(3):723-760. doi: 10.1177/1745691619895036. Epub 2020 Apr 23.
7
On the relations between HEXACO agreeableness (versus anger) and honesty-humility.
Scand J Psychol. 2021 Dec;62(6):887-894. doi: 10.1111/sjop.12772. Epub 2021 Sep 25.
10
Nonlinear quality-related fault detection using combined deep variational information bottleneck and variational autoencoder.
ISA Trans. 2021 Aug;114:444-454. doi: 10.1016/j.isatra.2021.01.002. Epub 2021 Jan 11.

引用本文的文献

2
A deep learning latent variable model to identify children with autism through motor abnormalities.
Front Psychol. 2023 May 18;14:1194760. doi: 10.3389/fpsyg.2023.1194760. eCollection 2023.

本文引用的文献

1
A Deep Learning Algorithm for High-Dimensional Exploratory Item Factor Analysis.
Psychometrika. 2021 Mar;86(1):1-29. doi: 10.1007/s11336-021-09748-3. Epub 2021 Feb 2.
2
A deep learning model for detecting mental illness from user content on social media.
Sci Rep. 2020 Jul 16;10(1):11846. doi: 10.1038/s41598-020-68764-y.
3
From Louvain to Leiden: guaranteeing well-connected communities.
Sci Rep. 2019 Mar 26;9(1):5233. doi: 10.1038/s41598-019-41695-z.
4
Big Five personality domains and relationship satisfaction: Direct effects and correlated change over time.
J Pers. 2019 Dec;87(6):1206-1220. doi: 10.1111/jopy.12468. Epub 2019 Mar 4.
5
Psychometric Properties of the HEXACO Personality Inventory.
Multivariate Behav Res. 2004 Apr 1;39(2):329-58. doi: 10.1207/s15327906mbr3902_8.
6
Deep learning.
Nature. 2015 May 28;521(7553):436-44. doi: 10.1038/nature14539.
7
The HEXACO Honesty-Humility, Agreeableness, and Emotionality factors: a review of research and theory.
Pers Soc Psychol Rev. 2014 May;18(2):139-52. doi: 10.1177/1088868314523838. Epub 2014 Feb 26.
8
A meta-analytic review of the relationships between the five-factor model and DSM-IV-TR personality disorders: a facet level analysis.
Clin Psychol Rev. 2008 Dec;28(8):1326-42. doi: 10.1016/j.cpr.2008.07.002. Epub 2008 Jul 4.
9
Empirical, theoretical, and practical advantages of the HEXACO model of personality structure.
Pers Soc Psychol Rev. 2007 May;11(2):150-66. doi: 10.1177/1088868306294907.
10
Consistency of the factorial structures of personality ratings from different sour sources.
J Abnorm Psychol. 1949 Jul;44(3):329-44. doi: 10.1037/h0057198.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验