Suppr超能文献

一种通过运动异常识别自闭症儿童的深度学习潜在变量模型。

A deep learning latent variable model to identify children with autism through motor abnormalities.

作者信息

Milano Nicola, Simeoli Roberta, Rega Angelo, Marocco Davide

机构信息

Department of Humanistic Studies, University of Naples Federico II, Napoli, Italy.

Neapolisanit S.R.L. Rehabilitation Center, Ottaviano, Italy.

出版信息

Front Psychol. 2023 May 18;14:1194760. doi: 10.3389/fpsyg.2023.1194760. eCollection 2023.

Abstract

INTRODUCTION

Autism Spectrum Disorder (ASD) is a by-birth neurodevelopmental disorder difficult to diagnose owing to the lack of clinical objective and quantitative measures. Classical diagnostic processes are time-consuming and require many specialists' collaborative efforts to be properly accomplished. Most recent research has been conducted on automated ASD detection using advanced technologies. The proposed model automates ASD detection and provides a new quantitative method to assess ASD.

METHODS

The theoretical framework of our study assumes that motor abnormalities can be a potential hallmark of ASD, and Machine Learning may represent the method of choice to analyse them. In this study, a variational autoencoder, a particular type of Artificial Neural Network, is used to improve ASD detection by analysing the latent distribution description of motion features detected by a tablet-based psychometric scale.

RESULTS

The proposed ASD detection model revealed that the motion features of children with autism consistently differ from those of children with typical development.

DISCUSSION

Our results suggested that it could be possible to identify potential motion hallmarks typical for autism and support clinicians in their diagnostic process. Potentially, these measures could be used as additional indicators of disorder or suspected diagnosis.

摘要

引言

自闭症谱系障碍(ASD)是一种先天性神经发育障碍,由于缺乏临床客观和定量的测量方法,难以诊断。传统的诊断过程耗时且需要许多专家的共同努力才能妥善完成。最近的研究致力于利用先进技术实现自闭症的自动化检测。所提出的模型实现了自闭症检测的自动化,并提供了一种评估自闭症的新定量方法。

方法

我们研究的理论框架假设运动异常可能是自闭症的一个潜在标志,而机器学习可能是分析这些异常的首选方法。在本研究中,一种特殊类型的人工神经网络——变分自编码器,被用于通过分析基于平板电脑的心理测量量表检测到的运动特征的潜在分布描述来改进自闭症检测。

结果

所提出的自闭症检测模型表明,自闭症儿童的运动特征与发育正常儿童的运动特征始终存在差异。

讨论

我们的结果表明,有可能识别出自闭症典型的潜在运动标志,并在临床医生的诊断过程中为其提供支持。这些测量方法有可能用作疾病或疑似诊断的额外指标。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/69b5/10233098/f7a10b92b578/fpsyg-14-1194760-g001.jpg

相似文献

1
A deep learning latent variable model to identify children with autism through motor abnormalities.
Front Psychol. 2023 May 18;14:1194760. doi: 10.3389/fpsyg.2023.1194760. eCollection 2023.
2
An Autoencoder-Based Deep Learning Classifier for Efficient Diagnosis of Autism.
Children (Basel). 2020 Oct 14;7(10):182. doi: 10.3390/children7100182.
3
Detecting autism from picture book narratives using deep neural utterance embeddings.
Int J Lang Commun Disord. 2022 Sep;57(5):948-962. doi: 10.1111/1460-6984.12731. Epub 2022 May 12.
5
Autism spectrum disorder detection with kNN imputer and machine learning classifiers via questionnaire mode of screening.
Health Inf Sci Syst. 2024 Mar 6;12(1):18. doi: 10.1007/s13755-024-00277-8. eCollection 2024 Dec.
8
A new classification system for autism based on machine learning of artificial intelligence.
Technol Health Care. 2022;30(3):605-622. doi: 10.3233/THC-213032.
9
ASD-SAENet: A Sparse Autoencoder, and Deep-Neural Network Model for Detecting Autism Spectrum Disorder (ASD) Using fMRI Data.
Front Comput Neurosci. 2021 Apr 8;15:654315. doi: 10.3389/fncom.2021.654315. eCollection 2021.
10
AIMAFE: Autism spectrum disorder identification with multi-atlas deep feature representation and ensemble learning.
J Neurosci Methods. 2020 Sep 1;343:108840. doi: 10.1016/j.jneumeth.2020.108840. Epub 2020 Jul 9.

引用本文的文献

1
Developmental Psychology and Healthcare Professions: Autism Knowledge Among Nurses: An Observational Study.
Clin Pract. 2024 Dec 12;14(6):2693-2704. doi: 10.3390/clinpract14060212.
3
Improved motor skills in autistic children after three weeks of neurologic music therapy via telehealth: a pilot study.
Front Psychol. 2024 May 8;15:1355942. doi: 10.3389/fpsyg.2024.1355942. eCollection 2024.
4
A Prediction Model of Autism Spectrum Diagnosis from Well-Baby Electronic Data Using Machine Learning.
Children (Basel). 2024 Apr 3;11(4):429. doi: 10.3390/children11040429.
5
Enhancing early autism diagnosis through machine learning: Exploring raw motion data for classification.
PLoS One. 2024 Apr 22;19(4):e0302238. doi: 10.1371/journal.pone.0302238. eCollection 2024.
6
Implicit motor learning in children with autism spectrum disorder: current approaches and future directions.
Front Psychiatry. 2024 Apr 5;15:1253199. doi: 10.3389/fpsyt.2024.1253199. eCollection 2024.
7
Effect of Yoga Intervention on Problem Behavior and Motor Coordination in Children with Autism.
Behav Sci (Basel). 2024 Feb 4;14(2):116. doi: 10.3390/bs14020116.
8
Pregnancy in autistic women and social medical considerations: scoping review and meta- synthesis.
Front Psychiatry. 2023 Oct 27;14:1222127. doi: 10.3389/fpsyt.2023.1222127. eCollection 2023.

本文引用的文献

1
Examining Predictors of Different ABA Treatments: A Systematic Review.
Behav Sci (Basel). 2022 Aug 4;12(8):267. doi: 10.3390/bs12080267.
2
Exploring Factor Structures Using Variational Autoencoder in Personality Research.
Front Psychol. 2022 Aug 5;13:863926. doi: 10.3389/fpsyg.2022.863926. eCollection 2022.
5
Using Technology to Identify Children With Autism Through Motor Abnormalities.
Front Psychol. 2021 May 25;12:635696. doi: 10.3389/fpsyg.2021.635696. eCollection 2021.
6
Abnormal Gait Patterns in Autism Spectrum Disorder and Their Correlations with Social Impairments.
Autism Res. 2020 Jul;13(7):1215-1226. doi: 10.1002/aur.2302. Epub 2020 May 1.
8
Autism.
Lancet. 2014 Mar 8;383(9920):896-910. doi: 10.1016/S0140-6736(13)61539-1. Epub 2013 Sep 26.
9
Embodiment and sense-making in autism.
Front Integr Neurosci. 2013 Mar 26;7:15. doi: 10.3389/fnint.2013.00015. eCollection 2013.
10
Perception-action in children with ASD.
Front Integr Neurosci. 2012 Dec 12;6:115. doi: 10.3389/fnint.2012.00115. eCollection 2012.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验