Suppr超能文献

利用深度学习同时欠采样 k 空间和减少对比度数量实现高度加速的 MR 参数映射。

Highly accelerated MR parametric mapping by undersampling the k-space and reducing the contrast number simultaneously with deep learning.

机构信息

Paul C. Lauterbur Research Center for Biomedical Imaging, Shenzhen Institutes of Advanced Technology, Shenzhen 518055, People's Republic of China.

Department of Computer Science, Inner Mongolia University, Hohhot, People's Republic of China.

出版信息

Phys Med Biol. 2022 Sep 8;67(18). doi: 10.1088/1361-6560/ac8c81.

Abstract

To propose a novel deep learning-based method called RG-Net (reconstruction and generation network) for highly accelerated MR parametric mapping by undersampling k-space and reducing the acquired contrast number simultaneously.The proposed framework consists of a reconstruction module and a generative module. The reconstruction module reconstructs MR images from the acquired few undersampled k-space data with the help of a data prior. The generative module then synthesizes the remaining multi-contrast images from the reconstructed images, where the exponential model is implicitly incorporated into the image generation through the supervision of fully sampled labels. The RG-Net was trained and tested on the Tmapping data from 8 volunteers at net acceleration rates of 17, respectively. Regional Tanalysis for cartilage and the brain was performed to assess the performance of RG-Net.RG-Net yields a high-quality Tmap at a high acceleration rate of 17. Compared with the competing methods that only undersample k-space, our framework achieves better performance in Tvalue analysis.The proposed RG-Net can achieve a high acceleration rate while maintaining good reconstruction quality by undersampling k-space and reducing the contrast number simultaneously for fast MR parametric mapping. The generative module of our framework can also be used as an insertable module in other fast MR parametric mapping methods.

摘要

提出了一种新的基于深度学习的方法,称为 RG-Net(重建和生成网络),用于通过欠采样 k 空间和同时减少采集的对比度数量来实现高度加速的 MR 参数映射。该框架由重建模块和生成模块组成。重建模块通过数据先验从采集的少数欠采样 k 空间数据中重建 MR 图像。然后,生成模块从重建图像中合成其余的多对比度图像,其中指数模型通过全采样标签的监督隐式包含在图像生成中。在网络加速率分别为 17 的情况下,对 8 名志愿者的 Tmapping 数据进行了 RG-Net 的训练和测试。进行了软骨和大脑的区域 T 分析,以评估 RG-Net 的性能。RG-Net 在高加速率 17 时可生成高质量的 Tmap。与仅欠采样 k 空间的竞争方法相比,我们的框架在 T 值分析方面表现更好。该提出的 RG-Net 可以在通过欠采样 k 空间和同时减少对比度数量来实现快速 MR 参数映射的同时,以高加速率保持良好的重建质量。我们框架的生成模块也可以用作其他快速 MR 参数映射方法中的可插入模块。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验