大脑表型模型在那些不符合样本刻板印象的个体中失败。

Brain-phenotype models fail for individuals who defy sample stereotypes.

机构信息

Interdepartmental Neuroscience Program, Yale School of Medicine, New Haven, CT, USA.

MD-PhD program, Yale School of Medicine, New Haven, CT, USA.

出版信息

Nature. 2022 Sep;609(7925):109-118. doi: 10.1038/s41586-022-05118-w. Epub 2022 Aug 24.

Abstract

Individual differences in brain functional organization track a range of traits, symptoms and behaviours. So far, work modelling linear brain-phenotype relationships has assumed that a single such relationship generalizes across all individuals, but models do not work equally well in all participants. A better understanding of in whom models fail and why is crucial to revealing robust, useful and unbiased brain-phenotype relationships. To this end, here we related brain activity to phenotype using predictive models-trained and tested on independent data to ensure generalizability-and examined model failure. We applied this data-driven approach to a range of neurocognitive measures in a new, clinically and demographically heterogeneous dataset, with the results replicated in two independent, publicly available datasets. Across all three datasets, we find that models reflect not unitary cognitive constructs, but rather neurocognitive scores intertwined with sociodemographic and clinical covariates; that is, models reflect stereotypical profiles, and fail when applied to individuals who defy them. Model failure is reliable, phenotype specific and generalizable across datasets. Together, these results highlight the pitfalls of a one-size-fits-all modelling approach and the effect of biased phenotypic measures on the interpretation and utility of resulting brain-phenotype models. We present a framework to address these issues so that such models may reveal the neural circuits that underlie specific phenotypes and ultimately identify individualized neural targets for clinical intervention.

摘要

个体大脑功能组织的差异与一系列特征、症状和行为有关。到目前为止,用于模拟大脑表型线性关系的工作假设,是这种单一关系在所有个体中普遍存在,但并非所有参与者都适用同样有效的模型。更好地了解模型在哪些个体中失效以及为什么会失效,对于揭示稳健、有用和无偏的大脑表型关系至关重要。为此,我们在这里使用预测模型来研究大脑活动与表型之间的关系,这些模型是使用独立数据进行训练和测试的,以确保通用性,并检查模型的失败情况。我们将这种数据驱动的方法应用于一系列神经认知测量中,这些测量数据来自一个新的、具有临床和人口统计学异质性的数据集,结果在两个独立的、公开可用的数据集上得到了复制。在所有三个数据集上,我们发现模型反映的不是单一的认知结构,而是与社会人口统计学和临床协变量交织在一起的神经认知分数;也就是说,模型反映了刻板的特征,而当应用于那些与之不符的个体时,模型就会失效。模型失效是可靠的、特定于表型的,并且在数据集之间具有可转移性。总之,这些结果突显了一刀切建模方法的缺陷,以及有偏差的表型测量对解释和利用由此产生的大脑表型模型的影响。我们提出了一个框架来解决这些问题,以便这些模型能够揭示特定表型背后的神经回路,并最终确定针对临床干预的个体化神经靶点。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f7d4/9433326/497804c33293/41586_2022_5118_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索