Suppr超能文献

使用元匹配方法将表型预测模型从大尺寸解剖MRI数据转换为小尺寸解剖MRI数据。

Translating phenotypic prediction models from big to small anatomical MRI data using meta-matching.

作者信息

Wulan Naren, An Lijun, Zhang Chen, Kong Ru, Chen Pansheng, Bzdok Danilo, Eickhoff Simon B, Holmes Avram J, Yeo B T Thomas

机构信息

Centre for Sleep & Cognition & Centre for Translational Magnetic Resonance Research, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore.

Department of Electrical and Computer Engineering, National University of Singapore, Singapore, Singapore.

出版信息

Imaging Neurosci (Camb). 2024 Aug 1;2. doi: 10.1162/imag_a_00251. eCollection 2024.

Abstract

Individualized phenotypic prediction based on structural magnetic resonance imaging (MRI) is an important goal in neuroscience. Prediction performance increases with larger samples, but small-scale datasets with fewer than 200 participants are often unavoidable. We have previously proposed a "meta-matching" framework to translate models trained from large datasets to improve the prediction of new unseen phenotypes in small collection efforts. Meta-matching exploits correlations between phenotypes, yielding large improvement over classical machine learning when applied to prediction models using resting-state functional connectivity as input features. Here, we adapt the two best performing meta-matching variants ("meta-matching finetune" and "meta-matching stacking") from our previous study to work with T1-weighted MRI data by changing the base neural network architecture to a 3D convolution neural network. We compare the two meta-matching variants with elastic net and classical transfer learning using the UK Biobank (N = 36,461), the Human Connectome Project Young Adults (HCP-YA) dataset (N = 1,017), and the HCP-Aging dataset (N = 656). We find that meta-matching outperforms elastic net and classical transfer learning by a large margin, both when translating models within the same dataset and when translating models across datasets with different MRI scanners, acquisition protocols, and demographics. For example, when translating a UK Biobank model to 100 HCP-YA participants, meta-matching finetune yielded a 136% improvement in variance explained over transfer learning, with an average absolute gain of 2.6% (minimum = -0.9%, maximum = 17.6%) across 35 phenotypes. Overall, our results highlight the versatility of the meta-matching framework.

摘要

基于结构磁共振成像(MRI)的个性化表型预测是神经科学的一个重要目标。预测性能会随着样本量的增大而提高,但参与者少于200人的小规模数据集往往不可避免。我们之前提出了一个“元匹配”框架,用于转换从大型数据集中训练的模型,以改进在小规模收集工作中对新的未见表型的预测。元匹配利用表型之间的相关性,当应用于以静息态功能连接作为输入特征的预测模型时,比经典机器学习有大幅提升。在这里,我们通过将基础神经网络架构改为3D卷积神经网络,调整了我们之前研究中表现最佳的两个元匹配变体(“元匹配微调”和“元匹配堆叠”),使其适用于T1加权MRI数据。我们使用英国生物银行(N = 36,461)、人类连接组计划青年成人(HCP - YA)数据集(N = 1,017)和HCP - 衰老数据集(N = 656),将这两个元匹配变体与弹性网络和经典迁移学习进行比较。我们发现,无论是在同一数据集中转换模型,还是在使用不同MRI扫描仪、采集协议和人口统计学特征的数据集之间转换模型时,元匹配都大幅优于弹性网络和经典迁移学习。例如,当将一个英国生物银行模型转换到100名HCP - YA参与者时,元匹配微调在解释方差方面比迁移学习提高了136%,在35种表型上平均绝对增益为2.6%(最小值 = -0.9%,最大值 = 17.6%)。总体而言,我们的结果突出了元匹配框架的通用性。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b736/12272219/c360f997414b/imag_a_00251_fig1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验