文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

预测非小细胞肺癌化疗反应的计算机断层扫描影像组学特征:瘤周、瘤内还是联合特征?

Predicting chemotherapy response in non-small-cell lung cancer computed tomography radiomic features: Peritumoral, intratumoral, or combined?

作者信息

Chang Runsheng, Qi Shouliang, Zuo Yifan, Yue Yong, Zhang Xiaoye, Guan Yubao, Qian Wei

机构信息

College of Medicine and Biological Information Engineering, Northeastern University, Shenyang, China.

Key Laboratory of Intelligent Computing in Medical Image, Ministry of Education, Northeastern University, Shenyang, China.

出版信息

Front Oncol. 2022 Aug 8;12:915835. doi: 10.3389/fonc.2022.915835. eCollection 2022.


DOI:10.3389/fonc.2022.915835
PMID:36003781
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC9393703/
Abstract

PURPOSE: This study aims to evaluate the ability of peritumoral, intratumoral, or combined computed tomography (CT) radiomic features to predict chemotherapy response in non-small cell lung cancer (NSCLC). METHODS: After excluding subjects with incomplete data or other types of treatments, 272 (Dataset 1) and 43 (Dataset 2, external validation) NSCLC patients who were only treated with chemotherapy as the first-line treatment were enrolled between 2015 and 2019. All patients were divided into response and nonresponse based on the response evaluation criteria in solid tumors, version 1.1. By using 3D slicer and morphological operations in python, the intra- and peritumoral regions of lung tumors were segmented from pre-treatment CT images (unenhanced) and confirmed by two experienced radiologists. Then radiomic features (the first order, texture, shape, et al.) were extracted from the above regions of interest. The models were trained and tested in Dataset 1 and further validated in Dataset 2. The performance of models was compared using the area under curve (AUC), confusion matrix, accuracy, precision, recall, and F1-score. RESULTS: The radiomic model using features from the peritumoral region of 0-3 mm outperformed that using features from 3-6, 6-9, 9-12 mm peritumoral region, and intratumoral region (AUC: 0.95 versus 0.87, 0.86, 0.85, and 0.88). By the fusion of features from 0-3 and 3-6 mm peritumoral regions, the logistic regression model achieved the best performance, with an AUC of 0.97. This model achieved an AUC of 0.85 in the external cohort. Moreover, among the 20 selected features, seven features differed significantly between the two groups (p < 0.05). CONCLUSIONS: CT radiomic features from both the peri- and intratumoral regions can predict chemotherapy response in NSCLC using machine learning models. Combined features from two peritumoral regions yielded better predictions.

摘要

目的:本研究旨在评估瘤周、瘤内或联合计算机断层扫描(CT)影像组学特征预测非小细胞肺癌(NSCLC)化疗反应的能力。 方法:排除数据不完整或接受其他类型治疗的受试者后,2015年至2019年间纳入了272例(数据集1)和43例(数据集2,外部验证)仅接受化疗作为一线治疗的NSCLC患者。根据实体瘤疗效评价标准1.1版,将所有患者分为反应组和无反应组。通过使用3D Slicer和Python中的形态学操作,从治疗前CT图像(平扫)中分割出肺肿瘤的瘤内和瘤周区域,并由两名经验丰富的放射科医生进行确认。然后从上述感兴趣区域提取影像组学特征(一阶、纹理、形状等)。在数据集1中对模型进行训练和测试,并在数据集2中进一步验证。使用曲线下面积(AUC)、混淆矩阵、准确性、精确性、召回率和F1分数比较模型的性能。 结果:使用0 - 3 mm瘤周区域特征的影像组学模型优于使用3 - 6、6 - 9、9 - 12 mm瘤周区域和瘤内区域特征的模型(AUC:0.95对0.87、0.86、0.85和0.88)。通过融合0 - 3和3 - 6 mm瘤周区域的特征,逻辑回归模型取得了最佳性能,AUC为0.97。该模型在外部队列中的AUC为0.85。此外,在20个选定特征中,两组之间有7个特征存在显著差异(p < 0.05)。 结论:瘤周和瘤内区域的CT影像组学特征均可使用机器学习模型预测NSCLC的化疗反应。两个瘤周区域的联合特征产生了更好的预测效果。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d140/9393703/531a914bb44d/fonc-12-915835-g006.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d140/9393703/e08484b3a81d/fonc-12-915835-g001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d140/9393703/d8c8396b674f/fonc-12-915835-g002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d140/9393703/64c4ffcd441a/fonc-12-915835-g003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d140/9393703/cbe558308fdc/fonc-12-915835-g004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d140/9393703/0e61eef73a7b/fonc-12-915835-g005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d140/9393703/531a914bb44d/fonc-12-915835-g006.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d140/9393703/e08484b3a81d/fonc-12-915835-g001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d140/9393703/d8c8396b674f/fonc-12-915835-g002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d140/9393703/64c4ffcd441a/fonc-12-915835-g003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d140/9393703/cbe558308fdc/fonc-12-915835-g004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d140/9393703/0e61eef73a7b/fonc-12-915835-g005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d140/9393703/531a914bb44d/fonc-12-915835-g006.jpg

相似文献

[1]
Predicting chemotherapy response in non-small-cell lung cancer computed tomography radiomic features: Peritumoral, intratumoral, or combined?

Front Oncol. 2022-8-8

[2]
Predicting programmed death-ligand 1 expression level in non-small cell lung cancer using a combination of peritumoral and intratumoral radiomic features on computed tomography.

Biomed Phys Eng Express. 2022-2-1

[3]
An integrated model combined intra- and peritumoral regions for predicting chemoradiation response of non small cell lung cancers based on radiomics and deep learning.

Cancer Radiother. 2023-12

[4]
Prediction of Two-Year Recurrence-Free Survival in Operable NSCLC Patients Using Radiomic Features from Intra- and Size-Variant Peri-Tumoral Regions on Chest CT Images.

Diagnostics (Basel). 2022-5-25

[5]
MRI-based intratumoral and peritumoral radiomics for preoperative prediction of glioma grade: a multicenter study.

Front Oncol. 2024-5-13

[6]
Role of intratumoral and peritumoral CT radiomics for the prediction of EGFR gene mutation in primary lung cancer.

Br J Radiol. 2022-12-1

[7]
Combination of Peri- and Intratumoral Radiomic Features on Baseline CT Scans Predicts Response to Chemotherapy in Lung Adenocarcinoma.

Radiol Artif Intell. 2019-3-20

[8]
Intratumoral and peritumoral radiomics based on dynamic contrast-enhanced MRI for preoperative prediction of intraductal component in invasive breast cancer.

Eur Radiol. 2022-7

[9]
Stability and reproducibility of computed tomography radiomic features extracted from peritumoral regions of lung cancer lesions.

Med Phys. 2019-9-23

[10]
Deep radiomic model based on the sphere-shell partition for predicting treatment response to chemotherapy in lung cancer.

Transl Oncol. 2023-9

引用本文的文献

[1]
Clinically Explainable Prediction of Immunotherapy Response Integrating Radiomics and Clinico-Pathological Information in Non-Small Cell Lung Cancer.

Cancers (Basel). 2025-8-18

[2]
Integrative radiomics of intra- and peri-tumoral features for enhanced risk prediction in thymic tumors: a multimodal analysis of tumor microenvironment contributions.

BMC Med Imaging. 2025-7-17

[3]
Integration of intratumoral and peritumoral CT radiomic features with machine learning algorithms for predicting induction therapy response in locally advanced non-small cell lung cancer.

BMC Cancer. 2025-3-13

[4]
Evaluating peritumoral and intratumoral radiomics signatures for predicting lymph node metastasis in surgically resectable non-small cell lung cancer.

Front Oncol. 2024-10-11

[5]
Preoperative CT-based intra- and peri-tumoral radiomic models for differentiating benign and malignant tumors of the parotid gland: a two-center study.

Am J Cancer Res. 2024-9-15

[6]
Artificial intelligence in COPD CT images: identification, staging, and quantitation.

Respir Res. 2024-8-22

[7]
Radiomics model based on intratumoral and peritumoral features for predicting major pathological response in non-small cell lung cancer receiving neoadjuvant immunochemotherapy.

Front Oncol. 2024-3-20

[8]
The value of intratumoral and peritumoral radiomics features in differentiating early-stage lung invasive adenocarcinoma (≤3 cm) subtypes.

Transl Cancer Res. 2024-1-31

[9]
The global research of artificial intelligence in lung cancer: a 20-year bibliometric analysis.

Front Oncol. 2024-2-2

[10]
Application of radiomics in diagnosis and treatment of lung cancer.

Front Pharmacol. 2023-11-1

本文引用的文献

[1]
Predictive Radiomic Models for the Chemotherapy Response in Non-Small-Cell Lung Cancer based on Computerized-Tomography Images.

Front Oncol. 2021-7-7

[2]
Deep CNN Model Using CT Radiomics Feature Mapping Recognizes EGFR Gene Mutation Status of Lung Adenocarcinoma.

Front Oncol. 2021-2-12

[3]
Cancer Statistics, 2021.

CA Cancer J Clin. 2021-1

[4]
Assessment of Intratumoral and Peritumoral Computed Tomography Radiomics for Predicting Pathological Complete Response to Neoadjuvant Chemoradiation in Patients With Esophageal Squamous Cell Carcinoma.

JAMA Netw Open. 2020-9-1

[5]
Combination of Peri-Tumoral and Intra-Tumoral Radiomic Features on Bi-Parametric MRI Accurately Stratifies Prostate Cancer Risk: A Multi-Site Study.

Cancers (Basel). 2020-8-6

[6]
Deep learning radiomic nomogram can predict the number of lymph node metastasis in locally advanced gastric cancer: an international multicenter study.

Ann Oncol. 2020-7

[7]
Noninvasive imaging evaluation of tumor immune microenvironment to predict outcomes in gastric cancer.

Ann Oncol. 2020-6

[8]
Combination of Peri- and Intratumoral Radiomic Features on Baseline CT Scans Predicts Response to Chemotherapy in Lung Adenocarcinoma.

Radiol Artif Intell. 2019-3-20

[9]
Introduction to Radiomics.

J Nucl Med. 2020-2-14

[10]
Chemotherapy remains a cornerstone in the treatment of nonsmall cell lung cancer.

Curr Opin Oncol. 2020-1

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索