Suppr超能文献

BiTr-Unet:一种用于磁共振成像脑肿瘤分割的卷积神经网络与Transformer相结合的网络。

BiTr-Unet: a CNN-Transformer Combined Network for MRI Brain Tumor Segmentation.

作者信息

Jia Qiran, Shu Hai

机构信息

Department of Biostatistics, School of Global Public Health, New York University, New York, NY 10003, USA.

出版信息

Brainlesion. 2021 Sep;2021:3-14. doi: 10.1007/978-3-031-09002-8_1. Epub 2022 Jul 15.

Abstract

Convolutional neural networks (CNNs) have achieved remarkable success in automatically segmenting organs or lesions on 3D medical images. Recently, vision transformer networks have exhibited exceptional performance in 2D image classification tasks. Compared with CNNs, transformer networks have an appealing advantage of extracting long-range features due to their self-attention algorithm. Therefore, we propose a CNN-Transformer combined model, called BiTr-Unet, with specific modifications for brain tumor segmentation on multi-modal MRI scans. Our BiTr-Unet achieves good performance on the BraTS2021 validation dataset with median Dice score 0.9335, 0.9304 and 0.8899, and median Hausdor_ distance 2.8284, 2.2361 and 1.4142 for the whole tumor, tumor core, and enhancing tumor, respectively. On the BraTS2021 testing dataset, the corresponding results are 0.9257, 0.9350 and 0.8874 for Dice score, and 3, 2.2361 and 1.4142 for Hausdorff distance. The code is publicly available at https://github.com/JustaTinyDot/BiTr-Unet.

摘要

卷积神经网络(CNNs)在自动分割3D医学图像上的器官或病变方面取得了显著成功。最近,视觉Transformer网络在2D图像分类任务中表现出卓越性能。与CNNs相比,Transformer网络因其自注意力算法在提取长距离特征方面具有吸引人的优势。因此,我们提出了一种CNN-Transformer组合模型,称为BiTr-Unet,并对其进行了特定修改,用于多模态MRI扫描的脑肿瘤分割。我们的BiTr-Unet在BraTS2021验证数据集上取得了良好性能,全肿瘤、肿瘤核心和增强肿瘤的Dice分数中位数分别为0.9335、0.9304和0.8899,Hausdorff距离中位数分别为2.8284、2.2361和1.4142。在BraTS2021测试数据集上,Dice分数的相应结果为0.9257、0.9350和0.8874,Hausdorff距离为3、2.2361和1.4142。代码可在https://github.com/JustaTinyDot/BiTr-Unet上公开获取。

相似文献

1
BiTr-Unet: a CNN-Transformer Combined Network for MRI Brain Tumor Segmentation.
Brainlesion. 2021 Sep;2021:3-14. doi: 10.1007/978-3-031-09002-8_1. Epub 2022 Jul 15.
2
ETUNet:Exploring efficient transformer enhanced UNet for 3D brain tumor segmentation.
Comput Biol Med. 2024 Mar;171:108005. doi: 10.1016/j.compbiomed.2024.108005. Epub 2024 Jan 23.
4
Hybrid UNet transformer architecture for ischemic stoke segmentation with MRI and CT datasets.
Front Neurosci. 2023 Nov 30;17:1298514. doi: 10.3389/fnins.2023.1298514. eCollection 2023.
6
Swin Unet3D: a three-dimensional medical image segmentation network combining vision transformer and convolution.
BMC Med Inform Decis Mak. 2023 Feb 14;23(1):33. doi: 10.1186/s12911-023-02129-z.
7
HUT: Hybrid UNet transformer for brain lesion and tumour segmentation.
Heliyon. 2023 Nov 17;9(12):e22412. doi: 10.1016/j.heliyon.2023.e22412. eCollection 2023 Dec.
8
SwinCross: Cross-modal Swin transformer for head-and-neck tumor segmentation in PET/CT images.
Med Phys. 2024 Mar;51(3):2096-2107. doi: 10.1002/mp.16703. Epub 2023 Sep 30.
9
BPAT-UNet: Boundary preserving assembled transformer UNet for ultrasound thyroid nodule segmentation.
Comput Methods Programs Biomed. 2023 Aug;238:107614. doi: 10.1016/j.cmpb.2023.107614. Epub 2023 May 19.
10
VSmTrans: A hybrid paradigm integrating self-attention and convolution for 3D medical image segmentation.
Med Image Anal. 2024 Dec;98:103295. doi: 10.1016/j.media.2024.103295. Epub 2024 Aug 24.

引用本文的文献

1
A Review on Deep Learning Methods for Glioma Segmentation, Limitations, and Future Perspectives.
J Imaging. 2025 Aug 11;11(8):269. doi: 10.3390/jimaging11080269.
2
LIU-NET: lightweight Inception U-Net for efficient brain tumor segmentation from multimodal 3D MRI images.
PeerJ Comput Sci. 2025 Mar 31;11:e2787. doi: 10.7717/peerj-cs.2787. eCollection 2025.
3
Integrated brain tumor segmentation and MGMT promoter methylation status classification from multimodal MRI data using deep learning.
Digit Health. 2025 Apr 3;11:20552076251332018. doi: 10.1177/20552076251332018. eCollection 2025 Jan-Dec.
6
Transformers for Neuroimage Segmentation: Scoping Review.
J Med Internet Res. 2025 Jan 29;27:e57723. doi: 10.2196/57723.
7
Applications of Deep Neural Networks with Fractal Structure and Attention Blocks for 2D and 3D Brain Tumor Segmentation.
J Stat Theory Pract. 2024 Sep;18(3). doi: 10.1007/s42519-024-00384-5. Epub 2024 Jun 17.
9
Brain tumor segmentation by combining MultiEncoder UNet with wavelet fusion.
J Appl Clin Med Phys. 2024 Nov;25(11):e14527. doi: 10.1002/acm2.14527. Epub 2024 Sep 16.
10
Recent deep learning-based brain tumor segmentation models using multi-modality magnetic resonance imaging: a prospective survey.
Front Bioeng Biotechnol. 2024 Jul 22;12:1392807. doi: 10.3389/fbioe.2024.1392807. eCollection 2024.

本文引用的文献

1
A Two-Stage Cascade Model with Variational Autoencoders and Attention Gates for MRI Brain Tumor Segmentation.
Brainlesion. 2020 Oct;2020:435-447. doi: 10.1007/978-3-030-72084-1_39. Epub 2021 Mar 27.
2
A Deep Learning Approach to Re-create Raw Full-Field Digital Mammograms for Breast Density and Texture Analysis.
Radiol Artif Intell. 2021 Apr 14;3(4):e200097. doi: 10.1148/ryai.2021200097. eCollection 2021 Jul.
3
(TS)WM: Tumor Segmentation and Tract Statistics for Assessing White Matter Integrity with Applications to Glioblastoma Patients.
Neuroimage. 2020 Dec;223:117368. doi: 10.1016/j.neuroimage.2020.117368. Epub 2020 Sep 12.
4
Deep Learning Techniques for Medical Image Segmentation: Achievements and Challenges.
J Digit Imaging. 2019 Aug;32(4):582-596. doi: 10.1007/s10278-019-00227-x.
6
Deep learning.
Nature. 2015 May 28;521(7553):436-44. doi: 10.1038/nature14539.
7
The Multimodal Brain Tumor Image Segmentation Benchmark (BRATS).
IEEE Trans Med Imaging. 2015 Oct;34(10):1993-2024. doi: 10.1109/TMI.2014.2377694. Epub 2014 Dec 4.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验