Suppr超能文献

在体外进行预训练并对患者来源的数据进行微调可改进用于抗癌药物敏感性预测的深度神经网络。

Pre-Training on In Vitro and Fine-Tuning on Patient-Derived Data Improves Deep Neural Networks for Anti-Cancer Drug-Sensitivity Prediction.

作者信息

Prasse Paul, Iversen Pascal, Lienhard Matthias, Thedinga Kristina, Herwig Ralf, Scheffer Tobias

机构信息

Department of Computer Science, University of Potsdam, 14476 Potsdam, Germany.

Department of Computational Molecular Biology, Max Planck Institute for Molecular Genetics, 14195 Berlin, Germany.

出版信息

Cancers (Basel). 2022 Aug 16;14(16):3950. doi: 10.3390/cancers14163950.

Abstract

Large-scale databases that report the inhibitory capacities of many combinations of candidate drug compounds and cultivated cancer cell lines have driven the development of preclinical drug-sensitivity models based on machine learning. However, cultivated cell lines have devolved from human cancer cells over years or even decades under selective pressure in culture conditions. Moreover, models that have been trained on in vitro data cannot account for interactions with other types of cells. Drug-response data that are based on patient-derived cell cultures, xenografts, and organoids, on the other hand, are not available in the quantities that are needed to train high-capacity machine-learning models. We found that pre-training deep neural network models of drug sensitivity on in vitro drug-sensitivity databases before fine-tuning the model parameters on patient-derived data improves the models' accuracy and improves the biological plausibility of the features, compared to training only on patient-derived data. From our experiments, we can conclude that pre-trained models outperform models that have been trained on the target domains in the vast majority of cases.

摘要

报告众多候选药物化合物与培养癌细胞系组合抑制能力的大规模数据库推动了基于机器学习的临床前药物敏感性模型的发展。然而,在培养条件的选择压力下,培养的细胞系经过数年甚至数十年已从人类癌细胞退化而来。此外,基于体外数据训练的模型无法解释与其他类型细胞的相互作用。另一方面,基于患者来源的细胞培养物、异种移植和类器官的药物反应数据,其数量不足以训练高容量的机器学习模型。我们发现,与仅在患者来源的数据上进行训练相比,在体外药物敏感性数据库上对药物敏感性深度神经网络模型进行预训练,然后在患者来源的数据上微调模型参数,可提高模型的准确性,并提高特征的生物学合理性。从我们的实验可以得出结论,在绝大多数情况下,预训练模型的表现优于在目标域上训练的模型。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7386/9406038/110cbf0d4d37/cancers-14-03950-g001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验