Suppr超能文献

使用自身免疫发现转录组面板对乳糜泻进行人工智能分析,突出了包括BTLA在内的致病基因。

Artificial Intelligence Analysis of Celiac Disease Using an Autoimmune Discovery Transcriptomic Panel Highlighted Pathogenic Genes including BTLA.

作者信息

Carreras Joaquim

机构信息

Department of Pathology, School of Medicine, Tokai University, 143 Shimokasuya, Isehara 259-1193, Japan.

出版信息

Healthcare (Basel). 2022 Aug 16;10(8):1550. doi: 10.3390/healthcare10081550.

Abstract

Celiac disease is a common immune-related inflammatory disease of the small intestine caused by gluten in genetically predisposed individuals. This research is a proof-of-concept exercise focused on using Artificial Intelligence (AI) and an autoimmune discovery gene panel to predict and model celiac disease. Conventional bioinformatics, gene set enrichment analysis (GSEA), and several machine learning and neural network techniques were used on a publicly available dataset (GSE164883). Machine learning and deep learning included C5, logistic regression, Bayesian network, discriminant analysis, KNN algorithm, LSVM, random trees, SVM, Tree-AS, XGBoost linear, XGBoost tree, CHAID, Quest, C&R tree, random forest, and neural network (multilayer perceptron). As a result, the gene panel predicted celiac disease with high accuracy (95-100%). Several pathogenic genes were identified, some of the immune checkpoint and immuno-oncology pathways. They included , , , , , , , , , , , , , , etc. Among them, B and T lymphocyte associated (BTLA, CD272) was highlighted and validated at the protein level by immunohistochemistry in an independent series of cases. Celiac disease was characterized by high BTLA, expressed by inflammatory cells of the lamina propria. In conclusion, artificial intelligence predicted celiac disease using an autoimmune discovery gene panel.

摘要

乳糜泻是一种常见的与免疫相关的小肠炎症性疾病,由麸质引发,好发于具有遗传易感性的个体。本研究是一项概念验证性实验,重点在于利用人工智能(AI)和一个自身免疫性疾病发现基因panel来预测和模拟乳糜泻。在一个公开可用的数据集(GSE164883)上运用了传统生物信息学、基因集富集分析(GSEA)以及多种机器学习和神经网络技术。机器学习和深度学习方法包括C5、逻辑回归、贝叶斯网络、判别分析、KNN算法、LSVM、随机树、支持向量机、树状自适应分裂(Tree-AS)、XGBoost线性、XGBoost树、CHAID、Quest、C&R树、随机森林以及神经网络(多层感知器)。结果显示,该基因panel能够以较高准确率(95 - 100%)预测乳糜泻。鉴定出了几个致病基因,涉及一些免疫检查点和免疫肿瘤学通路。它们包括……等等。其中,B和T淋巴细胞相关分子(BTLA,CD272)受到关注,并在一个独立病例系列中通过免疫组织化学在蛋白质水平得到验证。乳糜泻的特征是BTLA水平较高,由固有层的炎症细胞表达。总之,人工智能利用自身免疫性疾病发现基因panel预测了乳糜泻。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c10f/9408070/a18d367997f8/healthcare-10-01550-g001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验