Suppr超能文献

微尺度叶轮泵用于器官芯片和微反应器中的循环流动。

Microscale impeller pump for recirculating flow in organs-on-chip and microreactors.

机构信息

Departments of Chemistry and Biomedical Engineering, University of Virginia, 248 McCormick Rd, Charlottesville, VA 22904, USA.

BioCirc Research Laboratory, School of Biomedical Engineering, Science, and Health Systems, Philadelphia, Drexel University, Philadelphia, PA, USA.

出版信息

Lab Chip. 2022 Feb 1;22(3):605-620. doi: 10.1039/d1lc01081f.

Abstract

Fluid flow is an integral part of microfluidic and organ-on-chip technology, ideally providing biomimetic fluid, cell, and nutrient exchange as well as physiological or pathological shear stress. Currently, many of the pumps that actively perfuse fluid at biomimetic flow rates are incompatible with use inside cell culture incubators, require many tubing connections, or are too large to run many devices in a confined space. To address these issues, we developed a user-friendly impeller pump that uses a 3D-printed device and impeller to recirculate fluid and cells on-chip. Impeller rotation was driven by a rotating magnetic field generated by magnets mounted on a computer fan; this pump platform required no tubing connections and could accommodate up to 36 devices at once in a standard cell culture incubator. A computational model was used to predict shear stress, velocity, and changes in pressure throughout the device. The impeller pump generated biomimetic fluid velocities (50-6400 μm s) controllable by tuning channel and inlet dimensions and the rotational speed of the impeller, which were comparable to the order of magnitude of the velocities predicted by the computational model. Predicted shear stress was in the physiological range throughout the microchannel and over the majority of the impeller. The impeller pump successfully recirculated primary murine splenocytes for 1 h and Jurkat T cells for 24 h with no impact on cell viability, showing the impeller pump's feasibility for white blood cell recirculation on-chip. In the future, we envision that this pump will be integrated into single- or multi-tissue platforms to study communication between organs.

摘要

流体流动是微流控和器官芯片技术的一个组成部分,它理想地提供仿生流体、细胞和营养物质交换以及生理或病理切变应力。目前,许多以仿生流速主动灌注流体的泵与细胞培养孵育器内的使用不兼容,需要许多管连接,或者太大而无法在有限的空间内运行多个设备。为了解决这些问题,我们开发了一种用户友好的叶轮泵,该泵使用 3D 打印设备和叶轮在芯片上再循环流体和细胞。叶轮的旋转由安装在计算机风扇上的磁铁产生的旋转磁场驱动;该泵平台无需管连接,一次可在标准细胞培养孵育器中容纳多达 36 个设备。使用计算模型来预测整个装置中的剪切应力、速度和压力变化。叶轮泵产生的仿生流体速度(50-6400μm/s)可通过调节通道和入口尺寸以及叶轮的旋转速度来控制,与计算模型预测的速度量级相当。预测的剪切应力在整个微通道和叶轮的大部分区域均处于生理范围内。叶轮泵成功地在 1 小时内再循环原代小鼠脾细胞,在 24 小时内再循环 Jurkat T 细胞,而对细胞活力没有影响,表明叶轮泵在芯片上进行白细胞再循环的可行性。在未来,我们设想将该泵集成到单个或多个组织平台中,以研究器官之间的通信。

相似文献

4
Reading aids for adults with low vision.针对视力低下成年人的阅读辅助工具。
Cochrane Database Syst Rev. 2018 Apr 17;4(4):CD003303. doi: 10.1002/14651858.CD003303.pub4.

引用本文的文献

本文引用的文献

8
Detergent wash improves vaccinated lymph node handling ex vivo.去污剂洗涤可改善疫苗接种淋巴结的离体处理。
J Immunol Methods. 2021 Feb;489:112943. doi: 10.1016/j.jim.2020.112943. Epub 2020 Dec 14.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验