Negi Arvind, Kesari Kavindra Kumar
Department of Bioproduct and Biosystems, School of Chemical Engineering, Aalto University, 02150 Espoo, Finland.
Department of Applied Physics, School of Science, Aalto University, 02150 Espoo, Finland.
Micromachines (Basel). 2022 Aug 6;13(8):1265. doi: 10.3390/mi13081265.
Chitosan is the most suitable encapsulation polymer because of its natural abundance, biodegradability, and surface functional groups in the form of free NH groups. The presence of NH groups allows for the facile grafting of functionalized molecules onto the chitosan surface, resulting in multifunctional materialistic applications. Quaternization of chitosan's free amino is one of the typical chemical modifications commonly achieved under acidic conditions. This quaternization improves its ionic character, making it ready for ionic-ionic surface modification. Although the cationic nature of chitosan alone exhibits antibacterial activity because of its interaction with negatively-charged bacterial membranes, the nanoscale size of chitosan further amplifies its antibiofilm activity. Additionally, the researcher used chitosan nanoparticles as polymeric materials to encapsulate antibiofilm agents (such as antibiotics and natural phytochemicals), serving as an excellent strategy to combat biofilm-based secondary infections. This paper provided a summary of available carbohydrate-based biopolymers as antibiofilm materials. Furthermore, the paper focuses on chitosan nanoparticle-based encapsulation of basil essential oil (), mandarin essential oil (), essential oil ("Ajwain"), dill plant seed essential oil (), peppermint oil (), green tea oil (), cardamom essential oil, clove essential oil (), cumin seed essential oil (), lemongrass essential oil (), summer savory essential oil (), thyme essential oil, cinnamomum essential oil (), and nettle essential oil (). Additionally, chitosan nanoparticles are used for the encapsulation of the major essential components carvacrol and cinnamaldehyde, the encapsulation of an nanoemulsion of eucalyptus oil (), the encapsulation of a mandarin essential oil nanoemulsion, and the electrospinning nanofiber of collagen hydrolysate-chitosan with lemon balm () and dill () essential oil.
壳聚糖是最合适的包封聚合物,因为它天然丰富、可生物降解,且具有游离NH基团形式的表面官能团。NH基团的存在使得功能化分子能够轻松接枝到壳聚糖表面,从而实现多功能材料应用。壳聚糖游离氨基的季铵化是在酸性条件下通常实现的典型化学修饰之一。这种季铵化改善了其离子特性,使其适用于离子-离子表面修饰。尽管壳聚糖本身的阳离子性质由于其与带负电荷的细菌膜相互作用而表现出抗菌活性,但壳聚糖的纳米级尺寸进一步增强了其抗生物膜活性。此外,研究人员使用壳聚糖纳米颗粒作为聚合物材料来包封抗生物膜剂(如抗生素和天然植物化学物质),这是对抗基于生物膜的继发性感染的一种出色策略。本文总结了可用的基于碳水化合物的生物聚合物作为抗生物膜材料。此外,本文重点关注基于壳聚糖纳米颗粒的罗勒精油()、柑橘精油()、阿育吠陀精油(“Ajwain”)、莳萝籽精油()、薄荷油()、绿茶油()、小豆蔻精油、丁香精油()、孜然籽精油()、柠檬草精油()、夏香薄荷精油()、百里香精油、肉桂精油()和荨麻精油()的包封。此外,壳聚糖纳米颗粒还用于包封主要成分香芹酚和肉桂醛,包封桉叶油()的纳米乳液,包封柑橘精油纳米乳液,以及胶原蛋白水解物-壳聚糖与香蜂草()和莳萝()精油的静电纺丝纳米纤维。