Suppr超能文献

氧化石墨烯纳米薄片沉积的薄金属箔上的池沸腾性能

Pool-Boiling Performance on Thin Metal Foils with Graphene-Oxide-Nanoflake Deposit.

作者信息

Bregar Tadej, Vodopivec Matevž, Pečnik Tim, Zupančič Matevž, Golobič Iztok

机构信息

Faculty of Mechanical Engineering, University of Ljubljana, Aškerčeva 6, 1000 Ljubljana, Slovenia.

出版信息

Nanomaterials (Basel). 2022 Aug 12;12(16):2772. doi: 10.3390/nano12162772.

Abstract

The pool-boiling performance of water on thin metal foils with graphene-oxide deposition was studied. The boiling performance was evaluated both on fully coated surfaces, achieved by spin-coating, and surfaces with a laser-textured nucleation site, into which graphene oxide was added via drop-casting. During the experiments, a high-speed IR camera was used to obtain the transient temperature and heat-flux distribution. At the same time, a high-speed video camera was used to acquire synchronized bubble-growth recordings. In addition, a surface-wettability analysis was conducted for all the samples. In the case of fully coated samples, graphene-oxide deposition resulted in an increased number of active nucleation sites and an increase in the nucleation temperature, leading to a lowered nucleation frequency. Meanwhile, samples with a single laser-textured nucleation site enabled the analysis of isolated vapor bubbles, confirming that graphene-oxide deposition leads to a higher nucleation temperature, consequently resulting in a larger bubble-departure diameter and longer growth time. Two explanations for the results are proposed: the wettability of graphene-oxide deposition and the filling of surface microcavities with graphene-oxide nanoflakes.

摘要

研究了氧化石墨烯沉积在薄金属箔上时水的池沸腾性能。通过旋涂在完全涂覆的表面以及具有激光纹理化成核位点的表面(通过滴铸法向其中添加氧化石墨烯)上评估沸腾性能。在实验过程中,使用高速红外摄像机获取瞬态温度和热流分布。同时,使用高速摄像机获取同步的气泡生长记录。此外,对所有样品进行了表面润湿性分析。对于完全涂覆的样品,氧化石墨烯沉积导致活性成核位点数量增加且成核温度升高,从而降低了成核频率。同时,具有单个激光纹理化成核位点的样品能够分析孤立的蒸汽泡,证实氧化石墨烯沉积导致更高的成核温度,进而导致更大的气泡脱离直径和更长的生长时间。针对这些结果提出了两种解释:氧化石墨烯沉积的润湿性以及氧化石墨烯纳米片对表面微腔的填充。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e1a3/9414086/02ad3b8649c3/nanomaterials-12-02772-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验