Structural Biology Laboratory and York Biomedical Research Institute, Department of Chemistry, The University of York, York, United Kingdom.
Max Planck Institute for Chemical Energy Conversion, Muelheim an der Ruhr, Germany.
Elife. 2022 Aug 26;11:e79361. doi: 10.7554/eLife.79361.
Electron bifurcation is a fundamental energy conservation mechanism in nature in which two electrons from an intermediate-potential electron donor are split so that one is sent along a high-potential pathway to a high-potential acceptor and the other is sent along a low-potential pathway to a low-potential acceptor. This process allows endergonic reactions to be driven by exergonic ones and is an alternative, less recognized, mechanism of energy coupling to the well-known chemiosmotic principle. The electron-bifurcating [FeFe] hydrogenase from (HydABC) requires both NADH and ferredoxin to reduce protons generating hydrogen. The mechanism of electron bifurcation in HydABC remains enigmatic in spite of intense research efforts over the last few years. Structural information may provide the basis for a better understanding of spectroscopic and functional information. Here, we present a 2.3 Å electron cryo-microscopy structure of HydABC. The structure shows a heterododecamer composed of two independent 'halves' each made of two strongly interacting HydABC heterotrimers connected via a [4Fe-4S] cluster. A central electron transfer pathway connects the active sites for NADH oxidation and for proton reduction. We identified two conformations of a flexible iron-sulfur cluster domain: a 'closed bridge' and an 'open bridge' conformation, where a Zn site may act as a 'hinge' allowing domain movement. Based on these structural revelations, we propose a possible mechanism of electron bifurcation in HydABC where the flavin mononucleotide serves a dual role as both the electron bifurcation center and as the NAD reduction/NADH oxidation site.
电子分支是自然界中一种基本的能量守恒机制,其中两个来自中间势能电子供体的电子被分裂,一个沿高势能途径被传递到高势能受体,另一个沿低势能途径被传递到低势能受体。这个过程允许吸能反应被放能反应驱动,是一种替代的、较少被认识的能量偶联机制,与著名的化学渗透原理相平行。来自 (HydABC)的电子分支[FeFe]氢化酶需要 NADH 和铁氧还蛋白来还原质子生成氢气。尽管在过去几年中进行了大量的研究,但 HydABC 的电子分支机制仍然是一个谜。结构信息可能为更好地理解光谱和功能信息提供基础。在这里,我们展示了 HydABC 的 2.3 Å 电子冷冻电镜结构。该结构显示了一个由两个独立的“半体”组成的异源十二聚体,每个半体由两个相互作用强烈的 HydABC 三聚体通过一个 [4Fe-4S] 簇连接而成。一个中央电子转移途径连接 NADH 氧化和质子还原的活性部位。我们确定了一个灵活的铁硫簇结构域的两种构象:“闭合桥”和“开放桥”构象,其中 Zn 位可能充当“铰链”,允许结构域运动。基于这些结构发现,我们提出了 HydABC 中电子分支的可能机制,黄素单核苷酸同时充当电子分支中心和 NAD 还原/NADH 氧化位点的双重角色。