Molecular Biophysics and Integrated Bioimaging Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States.
Department of Biochemistry and Molecular Biology, University of Georgia, Athens, Georgia 30602, United States.
Biochemistry. 2024 Jan 2;63(1):128-140. doi: 10.1021/acs.biochem.3c00472. Epub 2023 Nov 27.
Electron bifurcation (BF) is an evolutionarily ancient energy coupling mechanism in anaerobes, whose associated enzymatic machinery remains enigmatic. In BF-flavoenzymes, a chemically high-potential electron forms in a thermodynamically favorable fashion by simultaneously dropping the potential of a second electron before its donation to physiological acceptors. The cryo-EM and spectroscopic analyses of the BF-enzyme Fix/EtfABCX from suggest that the BF-site contains a special flavin-adenine dinucleotide and, upon its reduction with NADH, a low-potential electron transfers to ferredoxin and a high-potential electron reduces menaquinone. The transfer of energy from high-energy intermediates must be carefully orchestrated conformationally to avoid equilibration. Herein, anaerobic size exclusion-coupled small-angle X-ray scattering (SEC-SAXS) shows that the Fix/EtfAB heterodimer subcomplex, which houses BF- and electron transfer (ET)-flavins, exists in a conformational equilibrium of compacted and extended states between flavin-binding domains, the abundance of which is impacted by reduction and NAD(H) binding. The conformations identify dynamics associated with the enzyme and also recapitulate states identified in static structures of homologous BF-flavoenzymes. Reduction of Fix/EtfABCX's flavins alone is insufficient to elicit domain movements conducive to ET but requires a structural "trigger" induced by NAD(H) binding. Models show that Fix/EtfABCX's superdimer exists in a combination of states with respect to its BF-subcomplexes, suggesting a cooperative mechanism between supermonomers for optimizing catalysis. The correlation of conformational states with pathway steps suggests a structural means with which Fix/EtfABCX may progress through its catalytic cycle. Collectively, these observations provide a structural framework for tracing Fix/EtfABCX's catalysis.
电子分支(BF)是一种古老的厌氧生物能量偶联机制,其相关的酶机制仍然神秘。在 BF-黄素酶中,一个化学高能电子以有利的方式形成,同时在将第二个电子捐赠给生理受体之前降低其电位。来自的 BF 酶 Fix/EtfABCX 的低温 EM 和光谱分析表明,BF 位点包含特殊的黄素腺嘌呤二核苷酸,并且在其被 NADH 还原后,一个低电位电子转移到铁氧还蛋白和一个高电位电子还原menaquinone。高能中间体的能量转移必须通过构象精心协调来避免平衡。在此,厌氧大小排除耦合小角 X 射线散射(SEC-SAXS)表明,Fix/EtfAB 异源二聚体亚基复合物,其包含 BF 和电子转移(ET)黄素,在黄素结合域之间的紧凑和扩展状态之间存在构象平衡,其丰度受还原和 NAD(H)结合的影响。这些构象确定了与酶相关的动力学,并且还再现了同源 BF-黄素酶静态结构中鉴定的状态。Fix/EtfABCX 的黄素的单独还原不足以引起有利于 ET 的构象运动,但需要 NAD(H)结合诱导的结构“触发”。模型表明,Fix/EtfABCX 的超二聚体存在于其 BF 亚复合物的组合状态,这表明超级单体之间存在协同作用机制,以优化催化作用。构象状态与途径步骤的相关性表明了 Fix/EtfABCX 可能通过其催化循环前进的结构手段。总之,这些观察结果为追踪 Fix/EtfABCX 的催化作用提供了结构框架。