Department of Physics, Yale University, New Haven, CT, USA.
JILA, National Institute of Standards and Technology and the University of Colorado, Boulder, CO, USA.
Nature. 2021 Feb;590(7845):238-242. doi: 10.1038/s41586-021-03226-7. Epub 2021 Feb 10.
The manipulation of quantum states of light holds the potential to enhance searches for fundamental physics. Only recently has the maturation of quantum squeezing technology coincided with the emergence of fundamental physics searches that are limited by quantum uncertainty. In particular, the quantum chromodynamics axion provides a possible solution to two of the greatest outstanding problems in fundamental physics: the strong-CP (charge-parity) problem of quantum chromodynamics and the unknown nature of dark matter. In dark matter axion searches, quantum uncertainty manifests as a fundamental noise source, limiting the measurement of the quadrature observables used for detection. Few dark matter searches have approached this limit, and until now none has exceeded it. Here we use vacuum squeezing to circumvent the quantum limit in a search for dark matter. By preparing a microwave-frequency electromagnetic field in a squeezed state and near-noiselessly reading out only the squeezed quadrature, we double the search rate for axions over a mass range favoured by some recent theoretical projections. We find no evidence of dark matter within the axion rest energy windows of 16.96-17.12 and 17.14-17.28 microelectronvolts. Breaking through the quantum limit invites an era of fundamental physics searches in which noise reduction techniques yield unbounded benefit compared with the diminishing returns of approaching the quantum limit.
光量子态的操控具有增强基础物理搜索的潜力。直到最近,量子压缩技术的成熟才与受量子不确定性限制的基础物理搜索同时出现。特别是,轴子量子色动力学为基础物理学中两个最大的未解决问题提供了可能的解决方案:量子色动力学的强 CP(电荷宇称)问题和暗物质的未知性质。在暗物质轴子搜索中,量子不确定性表现为一种基本的噪声源,限制了用于检测的正交观测值的测量。很少有暗物质搜索接近这个极限,到目前为止,还没有一个超过这个极限。在这里,我们使用真空压缩来规避暗物质搜索中的量子极限。通过将微波频率电磁场制备成压缩态,并近乎无噪声地仅读取压缩正交分量,我们将某些最近的理论预测所支持的质量范围内的轴子搜索速率提高了一倍。在 16.96-17.12 和 17.14-17.28 微电子伏特的轴子静止能量窗口内,我们没有发现暗物质的证据。突破量子极限将迎来一个基础物理搜索的时代,在这个时代,与接近量子极限的收益递减相比,降噪技术将产生无限的好处。