Suppr超能文献

大麦基因库中的结构变异:使用短读测序检测它们的精确性和灵敏度及其与基因表达和表型变异的关联。

Structural variants in the barley gene pool: precision and sensitivity to detect them using short-read sequencing and their association with gene expression and phenotypic variation.

机构信息

Institute for Quantitative Genetics and Genomics of Plants, Universitätsstraße 1, 40225, Düsseldorf, Germany.

Institute for Molecular Physiology, Universitätsstraße 1, 40225, Düsseldorf, Germany.

出版信息

Theor Appl Genet. 2022 Oct;135(10):3511-3529. doi: 10.1007/s00122-022-04197-7. Epub 2022 Aug 27.

Abstract

Structural variants (SV) of 23 barley inbreds, detected by the best combination of SV callers based on short-read sequencing, were associated with genome-wide and gene-specific gene expression and, thus, were evaluated to predict agronomic traits. In human genetics, several studies have shown that phenotypic variation is more likely to be caused by structural variants (SV) than by single nucleotide variants. However, accurate while cost-efficient discovery of SV in complex genomes remains challenging. The objectives of our study were to (i) facilitate SV discovery studies by benchmarking SV callers and their combinations with respect to their sensitivity and precision to detect SV in the barley genome, (ii) characterize the occurrence and distribution of SV clusters in the genomes of 23 barley inbreds that are the parents of a unique resource for mapping quantitative traits, the double round robin population, (iii) quantify the association of SV clusters with transcript abundance, and (iv) evaluate the use of SV clusters for the prediction of phenotypic traits. In our computer simulations based on a sequencing coverage of 25x, a sensitivity > 70% and precision > 95% was observed for all combinations of SV types and SV length categories if the best combination of SV callers was used. We observed a significant (P < 0.05) association of gene-associated SV clusters with global gene-specific gene expression. Furthermore, about 9% of all SV clusters that were within 5 kb of a gene were significantly (P < 0.05) associated with the gene expression of the corresponding gene. The prediction ability of SV clusters was higher compared to that of single-nucleotide polymorphisms from an array across the seven studied phenotypic traits. These findings suggest the usefulness of exploiting SV information when fine mapping and cloning the causal genes underlying quantitative traits as well as the high potential of using SV clusters for the prediction of phenotypes in diverse germplasm sets.

摘要

23 个大麦近交系的结构变异(SV)是通过基于短读测序的 SV 调用程序的最佳组合检测到的,这些 SV 与全基因组和基因特异性基因表达相关,因此,对其进行了评估,以预测农艺性状。在人类遗传学中,多项研究表明,表型变异更可能是由结构变异(SV)引起的,而不是由单核苷酸变异引起的。然而,在复杂基因组中准确且具有成本效益的 SV 发现仍然具有挑战性。我们研究的目的是:(i)通过基准测试 SV 调用程序及其组合,针对其在大麦基因组中检测 SV 的敏感性和精度,促进 SV 发现研究,(ii)描述 23 个大麦近交系基因组中 SV 簇的发生和分布,这些近交系是双轮随机群体的独特资源,用于映射数量性状,(iii)量化 SV 簇与转录丰度的关联,以及(iv)评估 SV 簇在预测表型性状中的应用。在我们基于 25x 测序覆盖率的计算机模拟中,如果使用最佳的 SV 调用程序组合,则所有 SV 类型和 SV 长度类别的组合都观察到敏感性 > 70%和精度 > 95%。我们观察到与基因相关的 SV 簇与全局基因特异性基因表达之间存在显著(P < 0.05)关联。此外,大约 9%的位于基因 5kb 内的 SV 簇与相应基因的基因表达显著相关(P < 0.05)。与来自研究的七个表型性状的阵列上的单核苷酸多态性相比,SV 簇的预测能力更高。这些发现表明,在精细定位和克隆数量性状的因果基因时,利用 SV 信息是有用的,并且在不同的种质资源中,使用 SV 簇预测表型具有很高的潜力。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1428/9519679/70406a33b577/122_2022_4197_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验